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1. INTRODUCTION

1.1. Purpose

The purpose of this document is to convey a formal specification for the Standard Virtual
Interface (SVI), a technology–independent functional interface which facilitates hardware up-
grades and technology insertion at the architectural level.  This specification should be used when
designing and modeling architectural  reuse library elements to ensure interoperability among
those various library elements.  The use of the SVI is not applicable to board or module level COTS
products.  Such products are expected to be based on an industry–accepted non–proprietary open
interface standard which allows upgrades and technology insertion with respect to that standard.
The SVI provides an additional level of interoperability and flexibility for upgrades and technology
insertion in cases where designs, while making use of COTS components at the chip level, are under
control of the RASSP user community.  Refer to the RASSP Model Year Architecture Specification,
Vols. I & II for more information about Model Year Architecture concepts and applications of the
SVI.  The definition of the SVI presented in this specification supercedes that which was presented
in the RASSP Model Year Architecture Working Document.

1.2. Scope

The scope of the SVI specification is defined to include the following:

– Signal / Functional Timing / Protocol Definition

– Concise definition of the signals, functional timing, and protocol of the SVI.

– Encapsulation Templates with Examples

– VHDL templates for SVI encapsulations resulting from the efforts expended on the ar-
chitecture verification task. These are provided to supplement the signal, timing, and
protocol definition described above for users of SVI, and are contained as SVI appen-
dices in MYA Specification Vol. IV.  These appendices also contain specific VHDL
encapsulations done on the verification task which are based on these templates.

– Encapsulation Guidelines

– Library element design guidelines to ensure that encapsulations are interoperable and
synthesizable.

1.3. Document Outline

This document is comprised of two parts; the specification proper (MYA Spec. Vol. III), and
the appendices (MYA Spec. Vol. IV).  Section 2. of this volume presents an SVI overview, while
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Section 3. contains the actual definition of the SVI:  signal definition (Section 3.1.), timing and pro-
tocol definition (Section 3.2.), and encapsulation guidelines (Section 4.).  Appendix I presents the
SVI types package.  Appendix II presents the SVI Encapsulation Template, while Appendix III pro-
vides encapsulation examples which can be used for reference in designing new SVI encapsulations.
Appendix IV contains SVI data–path width converters.  The purpose of the material provided in the
appendices will be explained in this Volume.

2. OVERVIEW AND CONCEPTS

The SVI enables the interoperability and upgradability of architectural level reuse library
elements by defining an interface protocol and implementation approach for reuse element encap-
sulation.  Encapsulated library elements (encapsulations) are categorized into three general types
of reuse element:  Internal Nodes, Fabric Interfaces, and RNI (Reconfigurable Network Interface)
Bridge Elements.  An internal node is essentially any architectural–level element which becomes
connected (through a fabric interface) to the system interconnect fabric.  Examples of internal nodes
include signal processors, vector processors, or shared memory.  A fabric interface is an element
which translates between the native communication protocol of an internal node or RNI element,
and the protocol of the interconnect fabric.  The term “interconnect fabric” is used to describe any
form of node–to–node communication medium.  Examples of interconnect fabrics include cross-
bar–based point–to–point interconnect networks, rings, and multidrop buses.  In Model Year Archi-
tecture nomenclature, the joining of an internal node and a fabric interface results in an Internal Mod-
ule; an architecture–level element as it appears at the system level.  Finally, an RNI bridge element
is a specialized SVI–to–SVI bridge which sits between two fabric interface encapsulations, resulting
in a fabric–to–fabric link which together is called an RNI.  Figure 1 illustrates these Model Year Ar-
chitecture reuse elements, and how they interface with the SVI in the MYA functional architecture.

Figure 2 illustrates the concept of the SVI.  Each library element, in this case a PE and a
COTS interface controller, includes an encapsulation wrapper which implements the SVI.  The
wrappers are described in VHDL code, and are written in Register Transfer Level (RTL) style which
enables the logic described by the code to be synthesized into a targeted PLD, FPGA, or ASIC de-
vice.  During the synthesis process, the wrappers from adjoining encapsulated elements (PE and fab-
ric interface, for example) are combined to create the PE-to-controller interface device.  Note that
as an alternative to this example, the COTS controller could be replaced by custom fabric interface
logic, also described in VHDL code.  In this alternative case, the wrappers as well as the interface
logic VHDL would be combined and synthesized into a single interface device, instead of the two
devices (COTS and wrappers) shown in Figure 2 .

The presence of the additional hardware layer imposed by the SVI will result in some over-
head in the resulting hardware implementation.  As part of the hardware synthesis process however,
the logic described in both encapsulations’ SVI wrappers are combined and optimized, resulting in
some of the incurred overhead being reduced.  This process will likely cause some of the signals
defined for the SVI to become implicit in the resulting logic. What remains of the SVI will be em-
bedded within the logic hardware device, and will not appear as explicit pins on a chip or interface
connector.  These characteristics give rise to the use of the term virtual in SVI.  Electrically reconfi-
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Figure 1 High Level View of MYA Functional Architecture and Reuse Elements
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gurable components, such as SRAM–based FPGAs, are particularly suited to implement SVI encap-
sulation logic, allowing easy design upgrades.

Not every library element will support every feature of the SVI. For example, an interface
that has only one physical or virtual channel into an interconnect network does not require the Chan-
nel ID (refer to section 3.1.1.), which can therefore be left unused.  The SVI is defined such that any
internal module may be interfaced to any fabric interface even if only a subset of the functionality
is supported for the pairing of two particular elements.

The SVI definition is designed to be general enough to handle different interprocessor com-
munication paradigms.  Some interconnect networks support a message passing paradigm to inter-
processor communication, while others support a global shared memory paradigm.  In some cases
there is synchronous operation between the internal node and the interconnect fabric, while in other
cases the internal node and the interconnect fabric operate asynchronously.  The SVI is by definition
synchronous; that is, each word of SVI data is transferred synchronously to the SVI clock.  Support
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Figure 2 Standard Virtual Interface Approach using Internal Node–to–Fabric
Interface example.
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for asynchronous operation between an internal node and the interconnect fabric can be easily han-
dled by the SVI encapsulation logic.

3. SVI SPECIFICATION

3.1. Signal Definition

The SVI signals are are organized into the following three interface partitions:

1) Data Output Interface

2) Data Input Interface

3) System Feed–Thru Interface (system interrupts, clocks, and resets)

The data path portion of the SVI is partitioned into two unidirectional data interfaces:  the Data Input
Interface which receives incoming SVI messages, and the Data Output Interface which transmits
outgoing SVI messages.  The data interfaces are implemented with a master/slave pair:  the SVI mas-
ter is a data source to the SVI Data Output Interface, while the SVI slave is a data sink to the Data
Input Interface.  The encapsulation of a typical architectural element therefore contains an SVI mas-
ter/slave pair.  The advantage of partitioning the data path in this way is that it supports interface
architectures with independent, concurrent data passing in both directions across the SVI.  A bidirec-
tional data interface can be obtained by using both unidirectional data interfaces controlled by the
SVI master and the SVI slave.  The System Feed–Thru Interface provides a mechanism to feed–
through essential, “real–time,” system–level signals that can not be conveniently transported across
the data path portion of the SVI.

The widths of all SVI signals and the values of enumerated signals, such as errors and aborts,
are all defined as constants in the VHDL file “svi_types_pkg.vhd.”  This file is included in Appendix
I of Volume IV.  These constants will be referred to in the signal descriptions below.  Figure 3  illus-
trates the configuration of a typical encapsulation, showing the unencapsulated architectural ele-
ment, the SVI wrapper containing the complete SVI logic, and the SVI signals which make up the
data and system feed–thru interfaces.  The interconnection of two SVI encapsulations is simply a
matter of connecting the mating portions of each encapsulation’s SVI signals:  the output interface
of each encapsulation to the input interface of the opposing encapsulation, and the feed–thru inputs
to their corresponding feed–thru outputs.

The following sections describe the signals defined for the SVI.

3.1.1. Data Interface

The Data Interface is the portion of the SVI which handles data transfers between two encap-
sulated elements and consists of both a Data Output Interface and a Data Input Interface. The Data
Output Interface signals and the Data Input Interface signals are defined identically, so the following
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Figure 3 Standard Virtual Interface Signal Definition
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signal descriptions apply to both interfaces. All of the signals described below, other than Clock and
Xfer Request, are only valid when the signal Xfer Request is asserted.  Each Data Output Interface
and each Data Input Interface shall contain:  Data, Clock, Xfer Request, Ready, and Data Valid.
The remaining interface signals, Channel ID, Slave Abort, Master Abort , Slave Error, and Mas-
ter Error,  may appear in any combination as needed by the particular encapsulation.

1) Data

A unidirectional parallel bus used to transfer data, address, header, or other in-
formation from a master to a slave.  The Data bus width is defined by the encap-
sulation designer, and is required to be in byte increments.  Different Data bus
widths will be resolved by the inclusion of width converter components which
will be available from the Model Year Architecture reuse library.  This will be
discussed more in section 4.  Data is valid only when Xfer Request and Data
Valid  are asserted and is sampled at the rising edge of Clock.

2) Channel ID

The master specifies the communication channel to be written to by the slave de-
vice via the Channel ID.  Channel ID is needed when there is more than one
channel (physical or virtual) defined within an interface.  Channel ID could be
used to identify a specific FIFO if there are multiple FIFOs. For example, there
may be FIFO(s) dedicated to short, high–priority messages.  Channel ID is valid
only when Xfer Request and Data Valid are asserted and must maintain the same
value for any given message.  The width of Channel ID is specified by the
constant channel_id_width in the VHDL file ”svi_types_pkg.vhd.”

3) Clock

Clock is used to synchronize the passing of data across the SVI from a master to a
slave.  There is no requirement on this clock’s frequency.

4) Xfer Request

Asserted by a master when it wishes to send a message across the SVI interface.
Asserted until the last data word is transferred by the master or the message is
aborted.

5) Ready

Asserted by a slave when it can accept data on Data.  The slave asserts/deasserts
Ready to modulate the rate of data transmission.  The master will output data on
the data interface, if available from the encapsulated element, in response to see-
ing Ready asserted on the rising edge of Clock.  The slave must be able to accept
a data word from the master on the rising clock edge immediately following the
cycle in which Ready was asserted.

6) Data Valid

Asserted by a master when there is valid data on Data.  The master asserts/deas-
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serts Data Valid to modulate the rate of data transmission. The slave will ex-
amine Data Valid at the rising edge of Clock to determine whether or not Data
should be sampled.

7) Last Word

Asserted by a master during the last data transfer cycle while Data Valid is as-
serted.  The slave will examine this signal at the rising edge of Clock to deter-
mine if the current Data word is the last data word in the message.  This signal
does not have to be asserted during the last data transfer of an SVI message if the
message is terminated due to an abort.

8) Slave Abort

Slave Abort is asserted by the slave when it wishes to abort an operation in prog-
ress.  The value of Slave_Abort indicates to the opposing master the reason for
the abort, which may assist the encapsulated element on the master side in deter-
mining how to respond after the abort; a null value is normally asserted.  Slave
Abort  is sampled at every rising clock edge during a message transaction.  The
width of Slave Abort is specified by the constant abort_width in the VHDL file
”svi_types_pkg.vhd;” this file also contains the enumeration type values for abort
signals.  Slave Abort is left unused in those encapsulations where it is not need-
ed.

9) Master Abort

Master Abort  is asserted by the master when it wishes to abort an operation in
progress.  The value of Master Abort  indicates to the opposing slave the reason
for the abort, which may assist the encapsulated element on the slave side in de-
termining how to respond after the abort; a null value is normally asserted.  Mas-
ter Abort  is sampled at every rising clock edge during a message transaction.
The width of Master Abort  is specified by the constant abort_width in the
VHDL file ”svi_types_pkg.vhd;” this file also contains the enumeration type val-
ues for abort signals.  Master Abort is left unused in those encapsulations where
it is not needed.

10) Slave Error

Slave Error is asserted by the slave to indicate it has detected an error (such as a
parity or transmission error).  The value of Slave Error indicates to the opposing
master the type of error that was encountered, which may assist the encapsulated
element on the master side in determining how to respond to the error condition; a
null value is normally asserted.  Slave Error is sampled at every rising clock
edge during a message transaction.  The width of Slave Error is specified by the
constant error_width in the VHDL file ”svi_types_pkg.vhd;” this file also con-
tains the enumeration type values for error signals.  Slave Error is left unused in
those encapsulations where it is not needed.
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11) Master Error

Master Error  is asserted by the master to indicate it has detected an error (such
as a parity or transmission error).  The value of Master Error  indicates to the op-
posing slave the type of error that was encountered, which may assist the encap-
sulated element on the slave side in determining how to respond to the error con-
dition; a null value is normally asserted.  Master Error  is sampled at every rising
clock edge during a message transaction.  The width of Master Error  is specified
by the constant error_width in the VHDL file ”svi_types_pkg.vhd;” this file also
contains the enumeration type values for error signals.  Master Error is left un-
used in those encapsulations where it is not needed.

3.1.2. Interrupts

Interrupt In/Out

The SVI allows for encapsulation elements to pass through system interrupt sig-
nals.  Each encapsulation may have one input interrupt port and/or one output in-
terrupt port.  The width of Interrupt In/Out is specified by the constant inter-
rupt_width in the VHDL file ”svi_types_pkg.vhd.”  Interrupt acknowledge
signals are to be transferred through the SVI data interfaces, using the “interrupt
acknowledge” SVI command.  Interrupt In  and/or Interrupt Out  are left unused
in those encapsulations where interrupts are not needed.

3.1.3. System Clocks

Sclock In/Out

The SVI allows for encapsulation elements to pass through system clocks.  Each
encapsulation may have one System Clock input and/or one System Clock output.
Note that Sclock In/Out is not necessarily the same as the clock used for data
transfers.  The Clock signal defined in Section 3.1.1. may be derived from the
System Clock.  For test reasons, it is preferred that all clocks be derived from
Sclock In/Out or locked to a single source and that the provisions for control and
observation of the System Clock be provided at each transition/interface point.
Sclock In and/or Sclock Out are left unused in those encapsulations where Clock
is sufficient.

3.1.4. System Reset

Sreset In/Out

The SVI allows for encapsulation elements to pass through system resets.  Each
encapsulation may have one System Reset input and/or one System Reset output.
Sreset In and/or Sreset Out are left unused in those encapsulations where resets
are not needed.
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3.2. Protocol and Timing

The SVI was designed to accommodate many different processing elements, interconnects,
and interface standards.  In order to achieve this accommodation, the SVI definition was required
to be as flexible as possible, while minimally impacting the performance and hardware characteris-
tics of a RASSP system.  Therefore, the SVI is defined as a very simple FIFO or I/O type of interface
that uses simple message passing to transfer data.  The protocol and functional timing will now be
discussed.  The SVI specification contains no absolute timing information because it is a technology
independent interface.  Absolute timing requirements will be established and adhered to in the im-
plementation (synthesis) process.

3.2.1. SVI Command Definition

The first data word of every SVI message shall contain an SVI command.  All current and
future SVI commands shall be of a width of one byte, and shall occupy the least significant byte of
the data bus, assuring that the SVI command will always be transferred in a single word transfer. Any
other bits of the first data word are “don’t care.”   The SVI command establishes the context of the
data in the accompanying message, and provides information which enables the receiving SVI inter-
face to properly interpret, and if necessary, functionally multiplex the data.  The message data is con-
tained in the data stream following the command, and may contain any combination of header(s),
address, and trailer(s), as required by the encapsulation.  The existing commands are shown in
Table 1 .

SVI Data(7 DOWNTO 0) Command Type

00000001 External Write Request

00000010 Internal Write Request

00000011 External Read Request

00000100 Internal Read Request

00000101 External Read Response

00000110 Internal Read Response

00000111 Read–Modify–Write Request

00001000 External Read Response – Split Read Request

00001001 Response to Split Read Request

00001010 Stop Read Request

Table 1 SVI Commands

This list contains commands needed to implement SVI encapsulations generated in the Model Year
Architecture Verification Task.  Additional commands may be added by the encapsulation designer
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as necessary, but must be documented in the application notes for the encapsulations.  The SVI com-
mands are defined in the file ”svi_types_pkg.vhd.”  This VHDL file should be used by all SVI encap-
sulations and is contained in Appendix I.

The External Write Request command is used to perform a write to some entity which is ex-
ternal to the encapsulation receiving this command.  Only the Data Output Interface is used by the
requesting (originating) encapsulation, and only the Data Input Interface is used by the destination
(receiving) encapsulation.

The Internal Write Request command is used to perform a write to some entity which is inter-
nal to the encapsulation receiving this command.  For example, this command might be used to write
to a configuration register of a Commercial–Off–The–Shelf (COTS) interface controller which is
internal to the interface encapsulation.  Only the Data Output Interface is used by the requesting
(originating) encapsulation, and only the Data Input Interface is used by the destination (receiving)
encapsulation.

The External Read Request command is used to request a read from some entity which is
external to the encapsulation receiving this command.  During the read request operation, only the
Data Output Interface is used by the requesting encapsulation, and only the Data Input Interface is
used by the encapsulation receiving the read request.  The read response operation consists of an
independent SVI transaction (see External / Internal Read Response).

The Internal Read Request command is used to request a read from some entity which is in-
ternal to the encapsulation receiving this command. For example, this command might be used to
read a status register of a commercial–off–the–shelf (COTS) interface controller.  During the read
request operation, only the Data Output Interface is used by the requesting encapsulation, and only
the Data Input Interface is used by the encapsulation receiving the read request.  The read response
operation consists of an independent SVI transaction (see External / Internal Read Response).

The External Read Response command is used to respond to a External Read Request.  The
Data Output Interface of the encapsulation which received the External Read Request will send an
External Read Response command when ready to return read data to the requestor.  During the read
response operation, only the Data Output Interface is used by the responding encapsulation, and only
the Data Input Interface is used by the encapsulation receiving the read response.

The Internal Read Response command is used to respond to a Internal Read Request.  The
Data Output Interface of the encapsulation which received the Internal Read Request will send an
Internal Read Response command when ready to return read data to the requestor.  During the read
response operation, only the Data Output Interface is used by the responding encapsulation, and only
the Data Input Interface is used by the encapsulation receiving the read response.

The Read–Modify–Write Request command is used to initiate an atomic (locked) read–
modify–write operation.  The Data Output Interface is used by the initiating encapsulation to trans-
mit the Read–Modify–Write Request, after which time the SVI transaction is suspended (Xfer Re-
quest remains asserted) while waiting for a External Read Response on the Data Input Interface.
Once the read data has been received and processed by the initiating encapsulation, this encapsula-
tion transmits the modify–write data on the Data Output Interface and terminates the transaction.
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The External Read Response – Split Read Request command is used to respond to an Exter-
nal Read Request, when the responding encapsulation wishes to delay or “split” the read response
into a later External Write operation when data is available.  Only the Data Output Interface is used
by the encapsulation requesting the split read (i.e. the encapsulation which received the original read
request); only the Data Input Interface is used by the encapsulation receiving the split read request
(i.e. the encapsulation which made the original read request).

The Response to Split Read Request command is used to respond to an External Read Re-
sponse – Split Read Request.  This response, from the encapsulation which initiated the original read
request, acknowledges the split read request, and accompanies any additional data which may be
needed by the requestor of the split read to later transact an External Write (e.g. the address of the
original read requestor).  Only the Data Output Interface is used by the encapsulation responding
to the split read (i.e. the encapsulation which made the original read request); only the Data Input
Interface is used by the encapsulation receiving the split read response (i.e. the encapsulation which
received the original read request).

The Stop Read Request command is used by an encapsulation which has initiated a read
(transmitted an External / Internal Read Request) to terminate the read response of the responding
encapsulation.  This command allows the termination of a read operation in applications where the
encapsulation being read would not know otherwise when to stop returning read data.  Only the Data
Output Interface is used by the requesting encapsulation, and only the Data Input Interface is used
by the destination encapsulation.

3.2.2. Command Usage and Message Composition

All current SVI commands are contained in the VHDL file ”svi_types_pkg.vhd” included
in Appendix I.  It is not necessary for an encapsulation to implement all possible SVI commands.
If the receiving encapsulation implements the command, the data transfer continues.  If the encap-
sulation cannot implement the command the encapsulation must, as a minimum, flag the fact that
it cannot implement the command by returning the SVI error Unsupported SVI Command.  The en-
capsulation could also abort the message as described in section 3.2.3.3.2.; this decision is left to the
encapsulation designer.  It is also highly recommended that any attempt to exercise unsupported
commands be made to result in simulation warnings through use of the VHDL ASSERT statement.

In order to achieve a successful data transfer between the encapsulated data source and en-
capsulated data sink, it is the SVI master’s responsibility to properly encode the data in the SVI mes-
sage and the SVI slave’s responsibility to properly decode it.  In general, this means that the SVI
master of the message source and the SVI slave of the message target must have prior knowledge
and agreement of each other’s message data formats.  The implication of this requirement is that al-
though the SVI enables interchangeability between encapsulated elements at the data link layer, true
interoperability can only be achieved when interconnected encapsulations understand each other’s
data stream format.

3.2.3. Data Transfer Control

Basic SVI data transfers occur across the SVI as read or write operations.   These basic opera-
tions can be further modified into: a “split read” when a read target responds to a read request with
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a request to return read data later with a write operation; and a read–modify–write, which allows an
atomic read and write from a target encapsulation’s memory.  From the perspective of the SVI inter-
face, there is no distinction between an internal or external operation; this difference simply deter-
mines the receiving encapsulation’s read or write source or destination.

3.2.3.1. Write Transactions

An example of a SVI external write message is shown in Figure 4 .  An internal write mes-
sage would be identical with the exception of the command.

Clock

Xfer Request

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Data Valid

Last Word

Channel ID

Ready

Data

SVI
Cmd

Data
1

Data
2

Data
3

Data
4

Command Cycle Data Cycle

SVI WRITE OPERATION

Wait Wait Wait Wait Wait WaitWait Wait

Figure 4 Example of SVI Write Operation

The message is started by the assertion of Xfer Request prior to clock 2.  The SVI slave responds
by asserting Ready prior to clock 3, indicating that the slave is ready for the SVI command.  This
is not a SVI requirement.  The slave could have asserted Ready prior to seeing the Xfer Request
signal asserted.  This would have allowed the command cycle to occur as early as clock 2.  After
seeing Ready asserted at clock 3, the SVI master places the command on the Data bus for the slave
by clock 4.  The slave inputs the command in response to seeing Data Valid asserted at clock 4. This
completes the command cycle.  After seeing Ready deasserted at clock 4, the SVI master does not
place any data on the Data bus after clock 4 until Ready is asserted again. Wait states occur from
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clocks 5 through 8 because the SVI slave is not ready for data.  At clock 8, the SVI master observes
that Ready is asserted and places data on the Data bus for clock 9, indicated by the assertion of Data
Valid .  This continues until clock 10.  Again wait states occur during clocks 11 and 12.  However,
these are due to the SVI master not supplying data.  The SVI slave remains ready for data.  Another
data transfer occurs during clock 13, indicated by the assertion of Data Valid.  The last data word
of the message is transferred at clock 14.  This is indicated by the assertion of Data Valid and Last
Word .  Note that Xfer Request remains high for this last data transfer.  Thus the SVI is idle by clock
15.  Notice that Channel ID is asserted starting with the command and ending with the last data
word.  The wait states at clocks 2–3, 5–8, and 11–12 are not required for an SVI write operation.
They were shown to explain how data flow can be paused on the SVI.  If conditions permit, data flow
can be completely continuous, without any wait cycles.  Also, the number of data words transferred
in this message is arbitrary.  There is no limit as to how many words may be transferred in a message.
However, one SVI command and at least 1 data word must be transferred in any SVI message.

3.2.3.2. Read Transactions

Unlike the SVI write operation, an SVI read procedure uses both Data Interfaces of both en-
capsulations involved in the read and read response operations.  A read is shown in Figure 5 .  The
Data Output and Data Input Interfaces are shown from the perspective of the encapsulation which
initiates the read.  The Data Output Interface of the read initiator is used to transfer a SVI message
containing a SVI read request command, internal or external, along with any data necessary to per-
form the read by the target encapsulation, such as starting address and number of words requested.
This message occurs from clock 2 until clock 6.  This message must complete before a read response
message can be started by the encapsulation receiving the read request.  Also, there is no requirement
as to how soon the encapsulation must respond with a read response after the read request message
has ended.  The number of data words transferred in the message is determined by the encapsulations
involved in the read.  There is no requirement as to how many data words are transferred, as long
as one SVI command and at least one data word are transferred in each message.  The read request
target performs the read on the encapsulated entity, then requests a transfer on the the read initiator’s
Data Input interface at clock 8.  The read target then places an SVI read response, internal or external,
on the SVI data bus during the command cycle.  It transfers all data resulting from the read in clock
cycles 8 and 9. The number of data words transferred in the message is determined by the encapsula-
tions involved in the read. This concludes the SVI read.  Note that the Clock on the Data Output
Interface does not have to be the same frequency as the Clock on the Data Input Interface.  Also note
that behavior of both the Data Output and Data Input Interfaces each follow the protocol and timing
illustrated in section 3.2.3.1.

3.2.3.3. Other SVI Operations

 For both reads and writes, errors and aborts can occur during the data transfer.  Errors and
aborts are propagated across either the Data Input or Data Output Interface.  Errors do not terminate
the transfer unless an encapsulation wishes to abort the transfer based on the error.  However, aborts
terminate the SVI message before completion.
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Figure 5 Example of SVI Read Operation

3.2.3.3.1. Errors

Errors can be transferred across the SVI regardless of the current state of the SVI.  The Error
signals have the following requirements.  First, when asserted, the signals must contain a valid error
code.  Second, when sending a valid error code, the Error  signal must remain asserted for at least
one clock cycle.  A list of valid error codes are shown in Table 2 .

Error (Master or Slave) Error Type

00000000 No Error

00000001 System Error

00000010 Data Error

00000011 Synchronization Error

00000100 Unsupported SVI Command

Table 2 SVI Error Codes
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These errors’ meanings are left to the encapsulation designer to interpret and use.  As with the SVI
commands, the errors listed in Table 2 may need to be expanded; more error codes can be easily add-
ed.  To insure interoperability of SVI encapsulations, these error codes are defined in the VHDL file
”svi_types_pkg.vhd” contained in Appendix I.  Again, all SVI encapsulations should use this file
to obtain valid error codes.  Even though the source of the error must use a valid error code, the encap-
sulation designer may decide how the encapsulation receiving the error will interpret and respond
to the error.   The requirements for the Error  signal are the same for both SVI master and slave and
for both Data Interfaces of an encapsulation.

3.2.3.3.2. Aborts

Aborts are used to terminate an SVI message prematurely.  The Abort signals have similar
requirements to the Error signals.   First, when asserted, the signals must contain a valid abort code.
A list of valid abort codes are shown in Table 3 .

Abort (Master or Slave) Abort Type

00000000 No abort

00000001 Abort due to system error

00000010 Abort due to data error

00000011  Abort due to refused connection

00000100  Abort due to lost destination

00000101  Abort due to lost source

00000110  Abort due to synchronization error

00000111 Abort due to SVI error

Table 3 SVI Abort Codes

These abort codes’ meanings are left to the encapsulation designer to interpret and use. As with the
SVI commands, Table 3  may need to be expanded; more abort codes can be easily added.  To insure
interoperability of SVI encapsulations, these abort codes are defined in the VHDL file
”svi_types_pkg.vhd” contained in Appendix I.  Again, all SVI encapsulations should use this file
to obtain valid abort codes.  Even though the source of the abort must use a valid abort code, the
encapsulation designer may decide how the receiving encapsulation will interpret the abort.  The
encapsulation designer also chooses which abort code to use when sending an abort.

In addition to using a valid abort code, the Abort  signals are only valid during an SVI mes-
sage.  This starts when Xfer Request is asserted and ends when Xfer Request is deasserted.  Also,
the Abort  signals must remain asserted until the SVI master’s Xfer Request is deasserted, signaling
the completed abort of the message.  As with errors, aborts can occur at any time during an SVI mes-
sage.  The requirements for the Abort  signals are the same for both SVI master and slave and for
both Data Interfaces of an encapsulation.
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An example of an SVI abort is shown in Figure 6 
.
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Figure 6 Example of SVI Write Operation with Abort cycle

Here, the SVI slave performs the abort of the SVI message.  Detecting a condition which causes an
abort, the SVI slave asserts some valid abort code at clock 10.  It is not important which abort code
is used for this example.  The SVI slave asserts its Abort  signals until seeing Xfer Request deas-
serted at clock 13.  This signals the completed abort of the message.  There is no requirement as to
how long the SVI master may take to abort a message.  This is left to the encapsulation designer.

The Abort  of an SVI read operation is identical to the write with the exception that both SVI
interfaces are involved.  Recall from section 3.2.3.2. that the message containing the read request
command must complete before a read response message can be started by the encapsulation receiv-
ing the read request.  An abort then, can occur in the message requesting the read or in the message
responding to the read.  Regardless of which message it occurs in, the same requirements as illus-
trated with the abort of the SVI write operation still hold.  In addition to these requirements, if the
abort occurs in the message containing the read request command the encapsulation receiving this
message must not send a read response message.
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4. ENCAPSULATION GUIDELINES

While all SVI encapsulations must adhere to the SVI specification, it is extremely beneficial
if they follow the guidelines described below.  These guidelines will serve to ensure several goals.
First, an SVI encapsulation should be a minimal solution in terms of hardware and performance
overhead.   Designers will be unwilling to incorporate the SVI into their systems unless hardware
and performance overhead are small.   Second, an SVI encapsulation should be robust,  allowing for
interoperability with other SVI encapsulations.  Reuse will occur only if SVI encapsulations are ro-
bust and interchangeable.  Third, an SVI encapsulation must be synthesizable.  The logic necessary
to implement an encapsulation should be capable of being targeted to a PLD, FPGA, or ASIC with
little or no modification.  Fourth, SVI encapsulations should be implemented using good coding
standards.  This will allow for easier understanding of an encapsulation, aiding reuse, debugging,
and modification, if needed.  Finally, the encapsulation should be accompanied by application notes
to ensure proper use.

4.1. Encapsulation Structure

The encapsulation structure of a RASSP reuse component must provide for interoperability
with other SVI encapsulations and be easily synthesized.  To be interoperable with other encapsula-
tions the encapsulation must:

� accept a clock rate into SVI slave at the Data Input Interface
which is different than the clock rate for the encapsulated enti-
ty.

� accept different data–path widths, in byte increments, into SVI
slave at the Data Input Interface for different applications.

� gracefully deny unimplemented SVI commands

SVI encapsulations will encompass many different interface standards and processing ele-
ments.  These different entities will most likely run at different clock frequencies.  Therefore, encap-
sulations must be able to operate with other encapsulations with different clock rates.  If an encap-
sulation can only operate at one clock frequency, it will be less likely to be reused.  However, this
requirement will increase the amount of hardware needed to implement the SVI slave portion of the
encapsulation.  To avoid even greater hardware overhead, the SVI master should be implemented
to operate at the same clock frequency as the encapsulated entity.

Different encapsulated entities will also contain varying data–path widths.  By requiring that
the slave of the SVI encapsulation be capable of accepting different data–path widths, two benefits
are realized.  First, logic to interface different data–path widths will only be required in the slave
portion of the SVI encapsulation.  Second, changing an encapsulation to accept different data–path
widths will be made easier by substituting in different data–path width converters in the same loca-
tion in the encapsulation, regardless of who designed the encapsulation.  Also, this logic can be easily
removed from the encapsulation if not needed for a particular application.  These data–path width
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converters will be available in the Model Year Architecture Reuse Library.  In order to easily facili-
tate conversion of a slave interface from one width to another, all SVI slave elements should contain
a width converter.  If no width conversion is required for a given application, a one–to–one width
converter should be used as a place holder.

Note that for a specific instantiation of any SVI encapsulation, the input clock rate and data–
path will remain fixed; these values will not change dynamically.  Encapsulations must be designed
with the flexibility however, to operate properly under the operating conditions associated with one
instantiation to the next.

In addition to clock rates and data–path widths, an SVI encapsulation must respond graceful-
ly when an unimplemented SVI command is received.  As a minimum, the encapsulation must return
the SVI error Unsupported SVI Command; a more robust approach would be to also abort the transfer
after reporting the error.  It is also highly recommended that any attempt to exercise unsupported
commands be made to result in simulation warnings through use of the VHDL ASSERT statement.

Three SVI encapsulations, illustrating good encapsulation structure, will be examined.  First
will be a internal node encapsulation with a Processing Element as the node, then an interconnect
fabric encapsulation, and finally an interconnect fabric encapsulation incorporating a Commercial–
Off–The–Shelf (COTS) interface controller.  All encapsulations are shown as logical entities, or as
they would appear in the Model Year Architecture Reuse Library.  They are not shown as hardware
entities, or as they would appear after synthesis.
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4.1.1. Internal Node Encapsulation Structure

Figure 7  shows an example of an internal node encapsulation, with a processing element
(PE) as the node.  Note that the PE block may contain multiple processing entities, local memory,
DMA controller, and whatever support logic is necessary.  The shaded area shows the SVI wrapper,
containing the logic necessary to implement the SVI.  Explicitly shown here in the SVI Slave is a
FIFO and an SVI width converter.
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Figure 7 Internal Node Encapsulation Structure
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  To ensure that the encapsulation can accept different incoming data–path widths, the SVI
slave includes the entity svi_width_converter.  This is a library element capable of mapping data path
signals from one width to another.  Two converters are contained in Volume IV for reference.  Even
though a particular instance of an encapsulation will use a fixed data–path width, a one–to–one width
converter should be used in all encapsulations to allow simple reuse of the encapsulation through
the substitution of a different width converter, should a different incoming data–path width be re-
quired.

To allow for applications where the incoming SVI slave clock rate is different than the clock
rate of the PE, a FIFO along with separate logic on each side of the FIFO is used.  This allows the
SVI slave to write to the FIFO at one data rate while the FIFO can be read the at another data rate,
preferably the same as the PE.  In order to reduce both the level of design effort and the quantity of
hardware resources taken by the synthesized logic, a COTS FIFO may be used rather than including
this data storage in the synthesizable VHDL. The pin count, PLD/FPGA/ASIC cell count, board
space, and power consumption of logic device with the synthesized encapsulation should determine
whether or not an external FIFO chip or internal logic ram macro–cell should be utilized.  Note that
whether the FIFO function is implemented internally or externally to the synthesized logic, the FIFO
is still functionally considered part of the SVI wrapper.  If an external FIFO is implemented, a sepa-
rate “synthesis wrapper” will need to be created for synthesis, partitioning out any non–synthesis
parts.

The SVI master interfaces the PE to the outgoing SVI signals.  The SVI master typically
drives the Data Output Interface at the same clock rate as supplied by the PE to eliminate the need
for a FIFO, like the SVI slave, and to allow for a single state machine to implement the necessary
logic.  However, the encapsulation designer may chose to implement an encapsulation differently.

4.1.2. Interconnect Fabric Encapsulation Structure

Figure 8 shows an example of an interconnect fabric SVI encapsulation.  In this example,
both the SVI wrapper and the fabric interface will be implemented in the synthesized hardware, and
both are described in synthesizable VHDL code.  The approach of creating a custom fabric interface,
as opposed to employing a COTS interface controller is recommended only when the interconnect
protocol is extremely simple or no commercially available controller exists.  The shaded area shows
the SVI wrapper, containing the logic necessary to implement the SVI for the given interconnect
fabric interface.  As in the example of the PE encapsulation, in the SVI Slave is included a FIFO and
and SVI width converter.  The FIFO and SVI width converter ensure that a particular instance of the
encapsulation will operate with any incoming data width and any incoming clock rate.  Again, any
particular encapsulation may have additional functional blocks in either the SVI Slave or Master,
based on the functional partitioning decisions of the encapsulation designer.

The interconnect fabric interface is mapped to the outgoing SVI signals by the SVI master.
The SVI master outputs data using the same clock as supplied or derived from the fabric interface
to eliminate the need for a FIFO, like the SVI slave, and to allow for a single state machine to imple-
ment the necessary logic.
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4.1.3. Interconnect Fabric with COTS Controller Encapsulation Structure

Figure 9 shows an SVI fabric interface encapsulation implemented with a COTS interface
controller.  Unlike the fabric interconnect encapsulation shown in the previous example, this exam-
ple employs a COTS interface controller to implement the the fabric interface. If such a device is
available, this approach is preferred.  Using a COTS interface controller minimizes the level of de-

Figure 9 Fabric Interface Encapsulation With COTS Interface Controller
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sign effort and the quantity of hardware resources taken by the synthesized logic.  In addition, the
use of a COTS interface controller also ensures correct implementation of the open interface stan-
dard being encapsulated.  Note that the FIFO is optional.  If the COTS interface controller includes
an internal FIFO an additional FIFO would be superfluous.  Also note that a separate “synthesis
wrapper” will need to be created for synthesis, partitioning out the COTS controller and, if included,
any external FIFO.

4.2. General Considerations

In addition to following guidelines described above, some general guidelines should be fol-
lowed as well.

� Individual components of an encapsulation, such as the SVI master or sla-
ve, should be implemented as state machines.  State machines are easiest
to design, debug, modify, and synthesize.  Random  logic should be avoi-
ded where possible.

� Minimize the amount of data storage needed by controlling data flow con-
trol signals, such as the SVI signal Ready, asynchronously.  Designing
these signals as Mealy outputs helps data flow control stop data transfer
more quickly, thus reducing the amount of data storage needed.  Data flow
information will be transferred from the SVI to the encapsulated entity
and vice–versa more quickly if data flow outputs are determined by state
and input values versus state alone.  This will  reduce the amount of FIFO
cells needed to store incoming data during a pause of data flow.

� Don’t reference the falling edge of any clocks, unless required by the en-
capsulated entity.  This can place tight timing constraints on a hardware
realization of the encapsulation and also makes synthesis more difficult.
More will be discussed about this in section 4.4.

� Encapsulations should have no absolute time references, such as propaga-
tion delays.  These are technology dependent and are an outcome of the
synthesis process.

� All hardware design guidelines, i.e. no gating of the clock etc., and soft-
ware standards, i.e. extensive commenting, consistent coding style, etc.,
should be followed.

4.3. Application Notes

Application Notes will help a system architect determine if an encapsulation is useful for a
design, and if so, how to use the encapsulation in the design.  As a minimum, SVI encapsulation ap-
plication notes should include:

� Block diagram of encapsulation showing all major components
and their relationship to one another
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� Description of each component in the block diagram

� What SVI commands are implemented by encapsulation

� What SVI commands encapsulation generates (if applicable)

� How encapsulation interprets data in SVI message for each ac-
cepted command

� How SVI encapsulation will respond to all SVI errors

� How SVI encapsulation will respond to all SVI aborts

� What SVI errors encapsulation may generate

� What SVI aborts encapsulation may generate

� How SVI encapsulation generates and responds to interrupts

� What is the native data width that the SVI slave accepts (with-
out SVI data width converter)

� What current data width does the SVI slave accept (with SVI
data width converter)

� How encapsulation responds to and generates resets

� What signals are not implemented

� Data Sheets for all COTS components, including encapsulated
entity, necessary to implement encapsulation

This information should encourage reuse rather than redesign of SVI encapsulations.

4.4. Synthesis Guidelines

In order to produce an efficient and optimally synthesized realization of the SVI encapsulation, it
is important that the designer understand both the supported VHDL constructs and the hardware in-
ferencing rules of the chosen synthesis tool.  Supported constructs and inferencing rules for the Syn-
opsys Design Compiler, the synthesis tool for which early SVI synthesis trials have been conducted,
are fully documented in the references listed below.  Although covered in these references, the fol-
lowing guidelines emphasize a number of VHDL coding issues which were found to be critical in
the SVI synthesis trials.

4.4.1. Model Hierarchy

It is recommended that SVI encapsulations be described in a modular, hierarchical fashion.  A hierar-
chical design simplifies model verification, as blocks can be unit tested during VHDL simulation.
Furthermore, in the synthesis phase, it is recommended that the hierarchical modules be individually
synthesized prior to the synthesis of the complete design.  This allows viewing of a relatively con-
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tained portion of the synthesized logic schematics, in order to evaluate the design for inefficient or
unintended hardware constructs.  If this evaluation is attempted on a non–modular design, the sche-
matics may prove too unwieldy to allow any meaningful analysis of the realized design.

4.4.2. Combinational vs. Sequential Processes

In general, most encapsulation blocks should be constructed with two VHDL processes:  one de-
scribing the sequential (synchronous) portions of the logic (those containing storage elements) and
at least one describing the combinational (asynchronous) portions of the logic.  Further, as discussed
in section 4.2., it is recommended that these processes follow a state machine implementation style
(see examples in SVI Appendices, Vol. IV).  In order to produce the most efficient hardware realiza-
tion of the described logic, it is important that only those signal assignments for which registers are
intended, be assigned in the sequential process.  Any signals unnecessarily described in the sequen-
tial process will produce superfluous registers, which can greatly impact overall cell count.

4.4.3. Sequential Coding Specifics

The greatest challenge to writing synthesizable code is in the description of the sequential processes;
both in preventing unnecessary registers and in describing the sequential process in a style accept-
able to the synthesis tool.  Specifically:

– One process may not contain more than one IF or WAIT UNTIL (edge expression), where (edge
expression) is of the form (clk’EVENT AND clk = ’1’) or (NOT clk’STABLE AND clk = ’1’).

– An edge expression must be the only condition of an IF or ELSIF; there must be only one edge
expression in an IF; and the edge conditioned IF may not have an ELSE or ELSIF clause.

– A clock signal cannot be read as data in a process.

– When assigning a high–impedance (’Z’) value to a sequential signal, do so by creating a tri–state
enable signal inside the sequential process, and by performing the ’Z’ assignment in a combina-
tional process or the concurrent portion of the VHDL code.  If the ’Z’ assignment is made in the
sequential process, the synthesis tool will create a register to hold the inferred tri–state enable sig-
nal (in the case of a bussed tri–state signal, synthesis will create a unique register for the enable
of each signal bit). 
 

4.4.4. Miscellaneous:  Unsupported VHDL Constructs

– Signal assignment delay information is unsupported (ignored) by synthesis.

– TEXTIO is unsupported by synthesis; unused references to TEXTIO must be removed.

– Synthesis does not support PHYSICAL types.  Any signal assignment delays which are defined
by generics of type PHYSICAL (i.e. TIME), must be either removed or replaced with explicit time
delays (which will in turn be ignored by synthesis).
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– Configuration statements are unsupported (ignored) by synthesis.  This is only a problem when
configuration statements are used to associated entities to a component which has a name different
from the entity.

– Initial values are unsupported (ignored) by synthesis.  If initialization is required, it must be accom-
plished with an explicit signal assignment, preferably during a reset cycle.

– Synthesis can not resolve the I/O pad insertion of a tri–state INOUT port driven with multiple tri–
state drivers.  The designer must modify the design so that each out of any INOUT port has no
more than one tri–state gate connected to it.  Two modification methods are illustrated in
Figure 10 .
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Figure 10 Methods for Converting Outputs to a Single Tri–state Driver

– Avoid unconstrained INTEGER type variables or signals.  For unconstrained INTEGERS, synthe-
sis will instantiate unnecessary hardware to support the maximum integer range (generally 32
bits).

– The use of the OTHERS construct is not supported for signal slices:
e.g. foo(6 DOWNTO 3) <= OTHERS => ’0’; is unsupported for the signal foo(7 DOWNTO 0)

– Do not make multiple assignments to the same signal within a process (this does not apply to as-
signments to the same signal in mutually exclusive IF or CASE statements).  Instead, create a vari-
able to temporarily receive the value of the signal, and assign the variable value to the signal before
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exiting the process.

Additional References:

VHDL Compiler Reference Manual, Synopsys, Inc.

Introduction to HDL–Based Design Using VHDL, Synopsys, Inc.


