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1. INTRODUCTION

1.1. Purpose

 The purpose of this document is to convey a formal specification for hardware architecture
elements which comprise the RASSP Model Year Architecture (MYA) Functional Architecture.
The Functional Architecture defines the necessary components at the architectural level and the
manner in which their interfaces must be defined to ensure that the resulting architecture design is
upgradable and facilitates technology insertion.  As such, the Functional Architecture is a starting
point for developing an architecture for an application–specific problem, not a detailed instantiation
of an architecture.  Adherence to this specification will ensure the creation of architectural elements,
and the design of specific architectures which include them, which will provide the RASSP MYA
features of architectural element reuse, interoperability, and facilitated upgradability.

1.2. Scope

The scope of the hardware architecture element specification is defined to include the fol-
lowing:

– Functional Architecture Description and Design Guidelines

– The RASSP Functional Architecture is described along with a set of design guidelines and
constraints for general architectural development, such as how to properly use the func-
tional architecture and general use of encapsulation libraries.

– Hardware Element Interface Approach and Design Guidelines

– The Model Year Architecture approach to interfacing various signal processor components
in the functional architecture is defined.  Two approaches are defined in detail:  that for
interfacing internal modules in the processor architecture, and that for interfacing external
elements to the processor architecture.  This approach is primarily responsible for the high
degree of upgradability, interoperability, and insertion capability of the Model Year Archi-
tecture.

– The standard functional interface employed to carry out the MYA hardware element inter-
face approach, known as the Standard Virtual Interface (SVI) is detailed in a separate set
of specifications:  Model Year Architecture Specification Volumes III & IV – RASSP
Standard Virtual Interface Specification & Appendices.  An introduction to SVI is offered
here in Volume II.

– Encapsulated Library Component Implementation Guidelines

– The functional architecture describes a multi–viewed VHDL modeling hierarchy for defin-
ing architectural level reuse library components.  Guidelines for generating and imple-
menting each level of the VHDL model hierarchy is presented.
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1.3. Document Outline

 Section 2 provides a description of the RASSP Functional Architecture, along with design
guidelines and constraints for general architectural development.  Section 3 describes the MYA ar-
chitectural level component interface approach.  Section 4 discusses the MYA approach to defining
the test architecture of a RASSP processor design.  Section 5 defines the guidelines for generating
and implementing encapsulated reuse library components.  Section 6 describes a recommended
methodology for selecting from among open interface standards for incorporation into RASSP de-
signs.

2. FUNCTIONAL ARCHITECTURE

 The MYA Functional Architecture defines the necessary components at the architectural
level and the manner in which their interfaces must be defined to ensure that the resulting architec-
ture design is upgradable and facilitates technology insertion.  As such, the functional architecture
is a starting point for developing an architecture for an application–specific problem, not a detailed
instantiation of an architecture. The diversity of application domain requirements precludes specify-
ing instantiation details at this level.  Experience has shown the need to significantly tailor architec-
tures for different application domains.  While every design should start with the Functional Archi-
tecture, specific architectural details needed to serve the application problem at hand, such as what
type(s) of and how many processing elements (PEs) to use, the best interconnect topology for the
problem domain, the need for shared memories, etc.,  will be developed as part of the Architectural
Selection portion of the RASSP Methodology.  Figure 1 illustrates the relationship of the MYA
Functional Architecture to the overall Model Year Architecture Framework.  Readers are also en-
couraged to refer to Section 3. of Vol. I of the MYA Specification, for an overview of the RASSP
Model Year Architecture.  The Model Year Functional Architecture specifies:

– A high–level starting point from which to launch application–specific architecture
selection.

– The use of open standards for the interconnect fabric, sensor, and interchassis inter-
faces.  (Note: “interconnect fabric” is used in this document to refer to any struc-
ture that provides the physical paths necessary for internal module communica-
tion.)

– A standard approach for implementing interfaces.

The Model Year Functional Architecture DOES NOT specify:

– The topology or configuration of the interconnect fabric.  This is application–spe-
cific and is determined during the architecture selection portion of the RASSP
Methodology.

– The specific processor types to use.

– System–level interfaces (these depend on other platform subsystems that were pre-
viously designed).  RASSP signal processors must support a large number of ex-
isting and emerging interface standards.
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Figure 1 User’s View of Model Year Architecture

Figure 2 shows a  high–level view of the Model Year Functional Architecture.  The depiction
is purposely general to serve the needs of various application domains.  The only portions of the ar-
chitecture that are specified are 1) the use of an open standard interconnect fabric, 2) identification
of where interface standards should be used, 3) an approach to implementing internal module inter-
faces,  4) and an approach to implement various external interfaces called a Reconfigurable Network
Interface (RNI).  The Functional Architecture centers around the interconnect fabric which serves
as a backbone for the signal processor.  All internal nodes, i.e. processing elements, shared memo-
ries, and elements which interface the signal processor to the outside world, communicate through
the interconnect fabric through one or more ports.  The interconnect fabric is not necessarily only
a backplane, as this implies physical limits on its implementation (such as restricting the intercon-
nect fabric to rows of connectors in a cabinet). The interconnect fabric may physically extend onto
boards or modules.  Additionally, no physical restrictions on the definition of an internal module is
implied.  This provides flexibility in system partitioning and allows available technology to drive
the appropriate partitions.
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Figure 2 High Level View of Functional Architecture and Interface Definitions
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The key aspect of the Functional Architecture is the approach to implementing the various
interfaces, particularly the various signal processor components (general–purpose processors,
DSPs, special–purpose processors, and hardware accelerators), shared memories, sensors, and sub-
system components (ancillary equipment, mass storage devices, etc.).  The approach that has been
defined is one based on a combination of two concepts: 1) architectural layering, and 2) the use of
standard technology–independent functional interfaces (refer to Figure 2 ).  The primary reasons for
using a layered approach are that it provides logical decomposition into smaller, more manageable,
understandable, reusable, and maintainable parts.  Most importantly, it minimizes and confines
changes that are introduced as a result of modifications (e.g. upgrades). A technology–independent
functional interface is one that remains at the logical level, specifying no physical or electrical char-
acteristics.  Defining a standard at this level provides the following benefits:

1) Technology–independence greatly enhances model year upgrade / technology–in-
sertion capability.
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2) Significant reduction in time required to design new interfaces.

3) Interface access to all library elements with same I/F, reducing library mainte-
nance time and cost.

The use of standard technology–independent functional interfaces at key points within a lay-
ered architecture provides a powerful mechanism for achieving the MYA goals of rapid low–cost
upgrades and technology insertion. This interoperability is achieved through the definition of a
VHDL wrapper for each architectural–level reuse library element that implements a standard func-
tional interface.  This wrapper implements the hardware portion of the functional interface referred
to as the Standard Virtual Interface (SVI) which is introduced in Section 3.3, and described in detail
in Volumes III & IV of the MYA Specification.  The wrapper is said to “encapsulate” the library ele-
ment to hide implementation details, providing only an interface definition (the functional interface)
to the user.

Section 3. discusses the approach to defining hardware interfaces throughout the Functional
Architecture in more detail, including an introduction to the Standard Virtual Interface.

3. INTERFACE APPROACH

One of the most important aspects of the Model Year Architecture is the approach to interface
the various signal processor components.  These components include PEs (general–purpose proces-
sors, DSPs, special–purpose processors, and hardware accelerators), shared memories, sensors, and
subsystem components (ancillary equipment, mass storage devices, etc.).  The high importance
placed on the interface approach is a result of its impact on the upgradability and technology inser-
tion capability. The following sections describe an approach to defining interfaces to architectural
elements that focuses on providing a capability to upgrade systems through technology insertion
while simultaneously minimizing and localizing both hardware and software redesign through the
concept of layering.

3.1. Standard Virtual Interface

The standard functional interface which has been defined for the RASSP Model Year Archi-
tecture is know as the Standard Virtual Interface (SVI).  The SVI enables the interoperability and
upgradability of architectural level reuse library elements by defining an interface protocol and im-
plementation approach for reuse element encapsulation.  Encapsulated library elements (encapsula-
tions) are categorized into three general types of reuse element:  Internal Nodes, Fabric Interfaces,
and RNI (Reconfigurable Network Interface) Bridge Elements.  An internal node is essentially any
architectural–level element which becomes connected (through a fabric interface) to the system in-
terconnect fabric.  Examples of internal nodes include signal processors, vector processors, or
shared memory.  A fabric interface is an element which translates between the Standard Virtual Inter-
face of an internal node or RNI element,  and the protocol of the interconnect fabric.  The term “inter-
connect fabric” is used to describe any form of node–to–node communication medium.  Examples
of interconnect fabrics include crossbar–based point–to–point interconnect networks, rings, and
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multidrop buses.  In Model Year Architecture nomenclature, the joining of an internal node and a
fabric interface results in an Internal Module; an architecture–level element as it appears at the sys-
tem level.  Finally, an RNI bridge element is a specialized SVI–to–SVI bridge which sits between
two fabric interface encapsulations, resulting in a fabric–to–fabric link which together is called an
RNI.  Figure 2 illustrates these Model Year Architecture reuse elements, and how they interface with
the SVI in the MYA Functional Architecture.

Figure 3 illustrates the concept of the SVI.  Each library element, in this case a PE and a
COTS interface controller, includes an encapsulation wrapper which implements the SVI.  The
wrappers are described in VHDL code, and are written in Register Transfer Level (RTL) style which
enables the logic described by the code to be synthesized into a targeted PLD, FPGA, or ASIC de-
vice.  During the synthesis process, the wrappers from adjoining encapsulated elements (PE and fab-
ric interface, for example) are combined to create the PE-to-controller interface device.  Note that
as an alternative to this example, the COTS controller could be replaced by custom fabric interface
logic, also described in VHDL code.  In this alternative case, the wrappers as well as the interface
logic VHDL would be combined and synthesized into a single interface device, instead of the two
devices (COTS and wrappers) shown in Figure 3 .

Not every library element will support every feature of the SVI. For example, an interface
that has only one physical or virtual channel into an interconnect network does not require the Chan-
nel ID (refer to Volume III), which can therefore be left unused.  The SVI is defined such that any
internal module may be interfaced to any fabric interface even if only a subset of the functionality
is supported for the pairing of two particular elements.

The SVI definition is designed to be general enough to handle different interprocessor com-
munication paradigms.  Some interconnect networks support a message passing paradigm to inter-
processor communication, while others support a global shared memory paradigm.  In some cases
there is synchronous operation between the internal node and the interconnect fabric, while in other
cases the internal node and the interconnect fabric operate asynchronously.  The SVI is by definition
synchronous; that is, each word of SVI data is transferred synchronous with the SVI clock.  Support
for asynchronous operation between an internal node and the interconnect fabric can be handled by
the SVI encapsulation logic.

The data interface is partitioned into two unidirectional data interfaces:  the Data Input Interface
which receives incoming SVI messages, and the Data Output Interface which transmits outgoing
SVI messages.  The data interfaces are implemented with a master/slave pair:  the SVI master is a
data source to the SVI Data Output Interface, while the SVI slave is a data sink to the Data Input
Interface.  The encapsulation of a typical architectural element therefore contains an SVI master/
slave pair.  The advantage of partitioning the data path in this way is that it supports interface archi-
tectures with independent, concurrent data passing in both directions across the SVI.  A bidirectional
data interface can be obtained by using both unidirectional data interfaces controlled by the SVI mas-
ter and the SVI slave.  The detailed specification of the SVI, with examples, may be found in MYA
Specification Volumes III & IV – RASSP Standard Virtual Interface Specification.
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Figure 3 Standard Virtual Interface Approach using Internal Node–to–Fabric Inter-
face example.
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3.2. Internal Module Interfaces

Internal modules form the heart of any RASSP signal processor.  These are primarily the PEs
that implement all the signal processing functions performed in the system. They are given much
attention in the design process because their choice and implementation significantly impacts the
performance, size, weight, and cost of the signal processing system.  For this reason, PEs and their
associated interconnect fabric are prime targets for upgradability and technology insertion, which
requires an interface approach that supports rapid low–cost hardware and software upgrades.
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 Figure 4 illustrates the architectural approach for defining internal module interfaces.  The
characteristic feature of this approach is the formal separation of the functions of the internal node
(PE, memory node, etc.) from the fabric interface.  Making the analogy to the ISO/OSI reference
model, the lowermost communication layers, that is the physical (1) and the data link (2) layers, are
implemented within the Fabric Interface.  The Fabric Interface may be constructed of any or all of
the following: 1) custom random logic, 2) field–programmable gate array (FPGA), or 3) an applica-
tion–specific integrated circuit (ASIC).   Higher levels, from the network layer (3) and upward,
would be implemented within the internal node itself. The Internal Node may be a single PE or a
small cluster of PEs, custom hardware accelerators or a shared memory node.  Note that the ISO/OSI
model is being used as a reference and does not imply that the layering ultimately employed in defin-
ing the internal node architecture will strictly follow this model.  The important point is the formal
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definition and use of layering to isolate changes and facilitate interoperability of system components
when a particular component (Internal Node or Interconnect Fabric) is upgraded.

The key to successful application of a layered approach is defining the layer boundaries to
minimize layer interactions and to restrict layer interfacing to only upper and lower adjacent layers,
while maintaining a high degree of performance and implementation efficiency.  The layer interfaces
should generally be standardized.  However, to provide the level of interoperability and upgradabil-
ity for the Model Year Architecture approach to be successful, the interface between the Internal
Node and the Fabric Interface MUST be standardized.  As previously discussed, the Standard Virtual
Interface implements this standard functional interface.

3.3. External Interfaces

An approach must be defined to interface RASSP signal processors to sensors and other plat-
form subsystems.  This section describes an architectural approach called a Reconfigurable Network
Interface (RNI) for implementing such interfaces. Like the architectural approach for defining inter-
nal module interfaces, the concept of formal separation of an internal or controlling node and the
network or fabric interface by an SVI is applicable to the RNI.  Unlike the internal module interface,
which serves to interconnect internal nodes via the interconnect fabric, the RNI is a bridging element
between the internal interconnect fabric and a particular external interconnect fabric. A specific ex-
ample of this might be a bridge between a fabric based on the Scalable Coherent Interface (SCI) and
a MIL–STD–1553B network that interfaces to a navigation subsystem.  The RNI architecture is il-
lustrated in Figure 5 .

The RNI is divided into three logical elements: 1) Fabric Interface (internal), 2)  RNI Bridge
Element, and 3) Fabric Interface (external).  The fabric interfaces implement the specific interfaces
to the internal interconnect fabric and the specific external interconnect fabric under consideration.
The actual bridging function is performed by the RNI bridge element, which consists of a buffer
memory to facilitate asynchronous coupling between the two interfaces, and a controller which
coordinates data transfers and provides flow control.  The bridge element can be implemented via
custom logic (e.g. FPGA, ASIC) or a programmable processor.

As in the case of Internal Module interfaces, a layered communication approach is
employed.  Here, since the RNI provides a bridge between two interfaces, two separate layered struc-
tures exist.  Shown in Figure 5 , the two layered structures form a pyramid, with the lowest layers
of the two interfaces implemented in the Fabric Interface components.  The higher levels of each
structure are implemented within the RNI bridge element and converge where the data interchange
is stripped of all its interface specific identity by the lower layers, effectively performing a protocol
conversion.  Again, the ISO/OSI model is being used as a reference and does not imply that the layer-
ing ultimately employed in defining the internal node architecture will strictly follow this model or
implement all seven layers.

Two categories of the RNI can be defined based upon the bridge element implementation:
the custom RNI –– employing a custom hardware bridge element implementation –– and the pro-
grammable RNI –– employing a microprocessor–based bridge element. In general, either imple-
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Figure 5 External Interfaces using a Reconfigurable Network Interface
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mentation may be chosen for a given application, however the custom RNI will tend toward higher
design complexity with lower latency, while the programmable RNI will tend toward lower design
complexity (and higher reuse due to programmability) and higher latency.  The RASSP system de-
signer must make the necessary performance/complexity trade-offs for each particular application.
The greater the complexity of the external network and interconnect fabric which is being bridged,
the greater the complexity of custom hardware bridge element design.  In the case of bridging be-
tween relatively complex protocols, the burden of the bridging function may be more easily imple-
mented in software rather that executing a complicated custom hardware design.  In cases where the
protocol conversions are simple, or low latency is critical, the custom hardware approach will be
more attractive.

The exact implementation of the RNI itself depends on the type of system interface being
served.  A RNI to implement interfaces for loosely coupled processing subsystems, operator
consoles, and certain types of ancillary equipment will have one implementation, while a RNI to
support a remote sensor application will have another.  As mentioned above, the complexity of the
data transfer protocol may also have a wide variance.  A sensor or multidrop bus would generally
require a fairly simple protocol supported by a relatively simple hardware controller within the RNI
bridge element.  On the other hand, a local area network application most likely would require a pro-
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grammable processor to implement a more complex software–based protocol. More than one class
of RNI will be required to support all aspects of signal processor interfacing, and as described in
Section 2., would be supported through various object subclasses or derived classes for the Fabric
Interface, RNI Bridge Element, and External Network Interface within the reuse library.

3.4. System Implications of Layering

As previously stated, the primary reasons for using a layered approach to hardware architec-
ture design is that it provides a logical decomposition of the system into smaller, more manageable,
understandable, reusable, and maintainable parts; and perhaps most importantly, it minimizes and
confines changes that are introduced as a result of technology insertion.  This latter point is of prime
importance to the model year upgrade philosophy.  Layering has the potential for incurring some
disadvantages. A layered architecture necessarily creates more interfaces and encapsulates func-
tionality within the various levels, restricting how interactions between the various components can
occur.  These restrictions introduce levels of indirection between component interactions that can
decrease efficiency and therefore adversely impact performance.  Additional impacts to the system
design would include an increase in software code size and an increase in physical hardware required
to realize system components.

The advantages to be gained by layering are not automatically reaped by its use. Incorporat-
ing excessive layers will introduce unacceptable performance penalties or an unacceptable growth
in hardware. However, judicious layering can minimize the performance and size penalties, while
offering the advantages of reusability, maintainability, and upgradability. In some cases, tradeoffs
must be made between required functionality and acceptable performance.  For example, in the de-
sign of a RNI for an interface to a local area network, support for higher level protocols would be
needed, requiring additional layers to implement them.  Some overhead in performance may be ac-
ceptable, particularly if hard realtime response is not a consideration. In contrast, a RNI to imple-
ment a bus interface would require minimal layering since the protocols involved are at a fairly low
level.  Performance overhead in this case would not be acceptable.  While this overhead can be mini-
mized by careful application of layering, its existence must be accepted as a tradeoff to realize the
greater benefits of design and life cycle and cost reduction.

In general, the approach to architecture design in RASSP is to incorporate judicious layering
to facilitate the reusability, maintainability, and upgradability required to support the model year phi-
losophy, while allowing for optimization for different applications by trading functionality for per-
formance.  Layer definitions are to be incorporated only where necessary to isolate major hardware
components from changes which would otherwise be incurred as a result of upgrades and technology
insertion.

3.5. Application Guidelines

3.5.1. Partitioning of Reuse Elements

The MYA specification does not dictate the placement of the functional interface (SVI) with-
in the RASSP processor architecture.  As such, the selection of the optimum placement of the func-
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tional interface, that is, the determination of how system architecture components or groups of com-
ponents will be partitioned to create reuse library elements, is left to the discretion of the system
designer.  As discussed in Section 3.4., there is performance and hardware overhead associated with
the introduction of additional hardware layers.  Ultimately, the introduction of functional interfaces
into a processor architecture should be based on the design tradeoffs for the particular system ap-
plication.  In general however, reuse elements should be created on the basis of “architectural–level”
components.  An architectural–level component is considered a functional unit, referred to as an in-
ternal node in the discussions in Section 2., such as a processor or cluster of processors, a shared
memory module, or a hardware accelerator board, without its fabric interface (which is a separate
reuse element).  In general, the partition of an architectural–level component should also coincide
with the definition of LRMs (Line Replaceable Modules) for a particular application.   The introduc-
tion of the functional interface at lower levels of functionality will introduce additional performance
penalties without providing benefits in terms of upgradability or reuse.

3.5.2. Selecting Signals for Encapsulation

The functional interface concept in general, and the Standard Virtual Interface specifically,
is designed to facilitate the interoperability of architectural–level components operating on dispa-
rate data communication protocols.  SVI accomplishes this interoperability by defining a FIFO–
like–interface message passing protocol which provides handshaking to indicate:  1) when a source
would like to initiate a message transaction to a target, 2) when the target is ready to receive data
from the source, and 3) when the source is sending valid data.  Any communications protocols at
ISO/OSI levels 1–2 essentially communicate this same type of information:  the data to be trans-
ferred and synchronization signals from the sender and receiver.  The functional interface is not ap-
propriate for communicating a random collection of synchronous or asynchronous signals at some
arbitrary slice through some system logic.  Although it is completely possible to force any combina-
tion of signals into a representation on the functional interface, the design will likely be complicated,
will introduce high latencies due to interrupting the normal data stream to communicate changes in
other signal states, and the resulting meaning of the data transfers across the functional interface will
be so unique to the specific encapsulation, that true interoperability will be prevented without exten-
sive rework preceding interconnection with another reuse components.

3.5.3. Encapsulation of Commercial–Off–The–Shelf (COTS) Controllers

As discussed in MYA Specification Vol. III & IV, fabric interface encapsulations can be ac-
complished by encapsulating COTS controllers of the desired interconnect fabric.  One caution
needs to be recognized however.  A bus controller–type device often contains much more functional-
ity than simply a protocol engine for the interconnect fabric.  If the controller is meant as an interface
to a processing node or cluster, it may contain such additional processor–support functions as DMA
engines, system performance monitoring, and error detection and correction.  This additional func-
tionality is accompanied by associated data and control signals in addition to those specifically re-
lated to the interconnect fabric data.  As discussed in Section 3.5.2. above, the introduction of signals
outside the purview of those that can be classified as “interconnect fabric signals” into the functional
interface will likely result in an encapsulation that is difficult to implement, and whose performance
is highly degraded.  Although possible, it is generally not advisable to attempt to encapsulate a fabric
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interface by encapsulating such a function–rich interface controller.  Most likely, these functions ––
which were placed there for the benefit of a specific processor technology –– will have no use when
taken outside the context of their native processors, and joined with the fabric interface.

4. TEST ARCHITECTURE

As described in MYA Specification Vol. I,  RASSP signal processors must incorporate a test
strategy as an integral part of the design to ensure a high–quality product while maintaining the
aggressive goals of design cycle, non–recurring and life cycle cost reduction.  The support of this
test strategy however, does not directly impact the RASSP Model Year Architecture beyond that of
requiring that the test architecture incorporate standard test interfaces that will become required aug-
mentations to normal signal and control interfaces to chips, modules, and systems.

Given that the test interface incorporates an open test standard, most likely IEEE 1149.1 or
IEEE 1149.5,  it would be of no value to add an additional hardware layer on top of this standard
interface.  As such, the RASSP functional interface (SVI) is not involved in interconnecting standard
test structures.  If an application has need of a non–standard test interface, it can be transported on
the defined SVI signals, without a need to define dedicated test channels.

For further information on the RASSP test methodology refer to RASSP Design For Testabil-
ity (DFT) Methodology.

5. REUSE LIBRARY COMPONENT DEVELOPMENT

Although the RASSP Functional Architecture defines architectural level components and
their interface definitions, the embodiment of a Model Year Architecture lies in the reuse libraries
which support it.  The model reuse library consists of a structure of VHDL models which are in-
tended to address both the necessary level of representational abstraction and the necessary level
of physical hierarchy associated with each particular aspect of the RASSP system design process.
There exits a wide variety of model types to cover the full range of design activity requirements, from
architectural trade–off analysis to detailed integrated circuit design.  Succinct definitions of these
model types can be found in the RASSP VHDL Modeling Terminology and Taxonomy.  In the course
of the overall development of a RASSP system, any combination of types of VHDL models may
be developed, and therefore be placed in the reuse library.  Which particular models are developed
for any given system will depend on the components being developed, whether or not they are pro-
cured “off the shelf,” and the particular deliverables that are required in the development contract.
Refer to RASSP Product Data Packages Analysis for a discussion of recommended modeling re-
quirements for a RASSP system.  It is possible however, for illustrative purposes, to describe a typi-
cal model structure for a hypothetical RASSP system.

In this typical model structure, we define ten major views of a RASSP system which could
be required by the system design process.  We refer to the combined levels of representational ab-
straction and physical hierarchy as the “view” of the system offered by the model.  Associated with
each view is a “model type” which refers to the model’s classification in terms of the RASSP VHDL
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Modeling Terminology and Taxonomy.  Note that while the model that describes a particular view
is a reuse component,  the components of the model are also reuse elements, so the complete model
structure of the system may be more complex than these ten views.

View 1.:  System Specification Model Type:  Executable Specification
A behavioral description of the RASSP system, provided by the customer, which describes the
required performance of the system to be designed.

View 2.:  System Architecture Performance Model Type:  Token–Based Performance
Timing–only behavior to support high level architectural tradeoffs; internal modules (see
Figure 2 ) are leaf–level entities.

View 3.:  System Architecture Behavior Model Type:  Abstract Behavioral
Full timing and function of multi–component electronic modules, with abstract interface de-
scriptions, used for module–level trade–off analysis; internal modules are leaf–level entities.

View 4.:  System Module Interface Behavior Model Type:  Interface
Timing and function of multi–component electronic modules’ I/O interfaces only, used to de-
sign and verify module interface behavior; internal modules are leaf–level entities.

View 5.:  System Structure Model Type:  Pure Structural
A hierarchical view of the system structure only, for system–level and module–level intercon-
nect verification and test design; integrated circuits are leaf–level entities.

View 6.:  Module Performance Model Type:  Token–Based Performance
Timing–only behavior of multi–component modules, for building the System Architecture Per-
formance view, no leaf–level entities.

View 7.:  Module Behavior Model Type:  Detailed Behavioral
Full timing and function of individual integrated circuits for module–level detailed design and
verification; integrated circuits are leaf level entities.

View 8.:  Module Component Interface Behavior Model Type:  Interface
Timing and function of individual integrated circuits’ I/O interfaces only, used to design and
verify integrated circuit interface behavior; integrated circuits are leaf–level entities.

View 9.:  Integrated Circuit Behavior Model Type:  Detailed Behavioral
Full timing and function of individual integrated circuits, used for building the Module Behav-
ior view; no leaf–level entities, unless COTS soft cores are used.

View 10.:  Integrated Circuit Function Model Type:  Register Transfer Lvl. (RTL)
Technology–independent behavior of individual custom (non–COTS) integrated circuits used
for circuit synthesis;  no leaf–level entities, unless COTS soft cores are used.

Which of these particular model views are used to represent a particular system component
depends essentially on where the COTS boundaries lie within the system.  The RASSP reuse meth-
odology requires that there is, at a minimum, a detailed–behavioral model for every leaf–level entity
in a RASSP system.  This requirement assures that any future technology upgrade will at least have
a VHDL–executable behavioral specification of every component from which to re–design or re–ac-
quire that component in currently available model year technology.  If, for instance, a system con-
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tains a sub–system component such as a COTS processor in a chassis, then this chassis is a leaf–level
component in this system context, and a detailed–behavioral model of the processor would be re-
quired for the reuse library.  No models would be required of any components contained within the
chassis (boards, modules, or circuits) assuming that these are all part of the COTS component.  Alter-
natively, if a RASSP system contains a COTS integrated circuit, the reuse library would be required
to contain a detailed–behavioral model of the integrated circuit, but no RTL model would be neces-
sary.

The RASSP reuse library structure is key to supporting the RASSP design methodology
from two important standpoints:  it facilitates a seamless top–down design approach, as described
in detail in the RASSP Methodology, and it facilitates a reuse strategy that is not constrained by the
implementation technology targeted at the time of library component’s creation.  The RASSP design
process entails proceeding from a highly abstract virtual prototype – termed VP0 – describing the
key functional and performance features of the system, down to a highly detailed virtual prototype
– VP3 – which contains detailed hardware and software design implementation details.  One advan-
tage of the top–down virtual prototyping approach is that each stage of the virtual prototype is essen-
tially a copy of the more abstract virtual prototype above it, but containing more detailed, less ab-
stract, instantiations of the component descriptions.  For example, a VP2 virtual prototype used for
architecture verification would be comprised of View 3 models; leaf–level cells of modules (boards
or MCMs) described as behavioral entities with timing information at the module I/O level.  As inte-
grated circuit–level descriptions (View 9) of the components which comprise the modules are mod-
eled and instantiated into VP2, it becomes a VP3 – a low–level detailed description of the system.
Moreover, a top–down virtual prototyping design methodology, supported with the reuse model
hierarchy, allows the same basic virtual prototype structure to be matched to the granularity of the
problem under analysis, from architecture selection at one end to detailed circuit design on the other.

The RASSP reuse model structure also ensures that reuse elements will have a useful life
even as technological advances render the lower level, technology–dependent, implementation
models obsolete.  Assume that a complete reuse model structure has been created for a system, in-
cluding: a token–based performance model, where each of the internal modules are partitioned onto
single boards; abstract behavioral models of each of the boards; and RTL models of each of the cus-
tom integrated circuits on each board.  All these models would then exist in the reuse library for fu-
ture use.  One model year upgrade may find that the integrated circuit technology has advanced in
such a way so as to enable a major reduction in clock cycle time.  In this case, the model year upgrade
may necessitate a complete change to the RTL models of the integrated circuits, but the higher level
models could all be reused as is, since all the higher–level functionality would remain unchanged.
Another model year upgrade may be accompanied by advances in both integrated circuit technology
and packaging technology – enabling the repartitioning of the system with entire boards packaged
onto single MCMs, and multiple PEs onto single boards.  This model year upgrade would necessitate
changes to both the RTL (and detailed–behavioral) models of the integrated circuits and the abstract
behavioral models of the boards, since the MCM implementation caused changes to board–level
partitioning.  The token–based performance model could still be reused however, since the function-
ality at this level would remain unchanged.  Finally, if a model year upgrade includes all the above
changes in addition to changes to the system architecture, at this point only the original executable
specification would remain as a useful reuse element.  The power of describing architectural compo-
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nents in this hierarchy of abstraction levels from a reuse standpoint, is that as technology changes,
it is possible to traverse to higher and higher levels of the abstraction hierarchy, and still reuse impor-
tant aspects of the models.

The following sections further describe the basic RASSP VHDL modeling structure outlined
above.

5.1. System Specification View – Executable Specification Model

The executable specification is a behavioral description of the proposed RASSP system.  It
is provided by the customer, and the model describes the function and timing of the intended design
as seen from the system’s interfaces.  The executable specification may describe the electrical, be-
havioral, or physical aspects of the intended design, including power, cost, size, fit, and weight.

5.2. System Architecture Performance View –  Token-Based Performance Model

The system architecture performance view is obtained with a token–based performance
model.  This view is used to perform architecture tradeoffs and to determine details such as the num-
ber of processing elements required, the required processor interconnect network bandwidth,
memory architecture, and I/O bandwidth.  A performance model is a model that measures the ability
of a design to process input stimuli in a required period of time, generally in clock cycles.  A token–
based performance model measures performance at the highest level of abstraction, by modeling the
time required to perform functions within a design, and then passing symbolic data “tokens” be-
tween the performance model elements.  At this level of abstraction, there is no indication of how
functions are performed within each performance model element, and no actual data is (or can be)
processed by them.  The signals between elements in a token–based performance model do not cor-
respond to any physical pins or ports of the actual element implementation, but only represent their
functional ports.  The details of SVI encapsulation are invisible at this modeling level, but the timing
models will include any performance overhead for those elements that contain SVI encapsulations.

5.3. System Architecture Behavior View – Abstract Behavioral Models

The system architecture behavior view is obtained with an abstract behavioral model of the
system architecture.  The elements of this model describe the function and timing of architectural–
level components, without describing the details of their implementation.  Unlike a token–based per-
formance model, an abstract behavioral model of a system actually models the correct processing
of data presented at the inputs of its elements, and these elements will output their processed data
in a timing–correct manner.  Also unlike a token–based performance model, the interfaces of the
elements of an abstract behavioral model correspond to abstract complex data types representing
actual data, instead of tokens.  These abstract data types could represent a combination of data and
address, for example, but don’t correspond to actual physical I/O pins.

The system architecture behavior view is used during architecture verification and detailed
design, to perform verification of system software, and to investigate the impact of replacing archi-
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tectural elements during a model year upgrade.  The details of SVI encapsulation are still invisible
at this level of the model, but here again the abstract behavioral model must include any delay penal-
ties introduced by the SVI layer, if one is present.

5.4. System Module Interface Behavior View – Interface Models

The system module interface behavior view is obtained by assembling interface models of
the system architecture components.  The elements of this model describe the function and timing
of architectural–level component’s interfaces, without describing the details of the interface imple-
mentation or any internal functionality.  Data passed between elements is not processed by the ele-
ments, but is just “dummy data” used in order to model interface bus cycles and protocols.  The mo-
del is used to verify inter–element interconnect and the interface circuitry of interconnected
elements.  The inclusion of SVI encapsulations need not be reflected in the architecture component
interface models, as their interface behavior is unaffected by the SVI layer.

5.5. System Structure View – Pure Structural Model

The system structure view actually represents a hierarchy of structural models that convey
all structural information about the system, starting from the interconnection of the lowest leaf–level
COTS entities, on up to the system level.  The lowest level models will generally be multi–compo-
nent modules or boards (collections of integrated circuits), and higher–level models will correspond
to the physical partitioning of collections of these modules into boards, chassis, and sub–systems.
Moving down the physical hierarchy, structural modeling will cease whenever a COTS boundary
is reached, whether this is an integrated circuit device, a board, or a chassis.  The pure structural mod-
els are used to document physical interconnect for manufacturing, for interconnect verification dur-
ing detailed design, and for the creation of structural tests.  The presence of SVI encapsulation will
not be reflected in the system structure view.

5.6. Module Performance View –  Token-Based Performance Model

The module performance view is represented by a token–based performance model of a par-
ticular multi–component module (Section 5.2.).  The models provided by this view are used as leaf
cells in the construction of the system architecture performance view.  The models of the module
performance view  transmit and receive symbolic data tokens based on the function or operation they
are asked to perform.  The models contain no indication of how the element’s functions are per-
formed, and they are unable to actually process real data. The details of SVI encapsulation are invis-
ible at the level of a token–based performance model, but the model must take into account any delay
penalty introduced by encapsulated architectural elements.  This delay penalty will take the form
of the number of addition cycles of latency the SVI layer imposes.

5.7. Module Behavior View – Detailed Behavioral Model

The module behavior view models the behavior of multi–component modules by assembling
detailed behavioral models of the module’s integrated circuits.  These circuit models describe the
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function and timing of the integrated circuit components, but do not necessarily describe the specific
implementation details of the devices.  The models’ interfaces correspond to the physical pins of the
actual integrated circuit.  The module behavior view  is used for detailed design, and to investigate
the impact of replacing an individual integrated circuit during a model year upgrade.  Any delay pen-
alty associated with the SVI encapsulation must be be included in the timing behavior of affected
integrated circuit behavioral model.

5.8. Module Component Interface Behavior View – Interface Model

The module component interface behavior view is obtained by assembling interface models
of the integrated circuit components.  The component interface models do NOT contain the details
of internal behavior, but will properly model the interface behavior and timing of the integrated cir-
cuit device.  As with the module behavior view, in this view input data is not actually processed and
any output data is just “dummy” data; however all input and output control signals are fully function-
al in order to model interface bus cycles and protocols.  This view is used to verify intra–module
integrated circuit interconnect, and to verify the interface logic of interconnected devices.  The inclu-
sion of SVI encapsulations need not be reflected in the integrated circuit interface models, as their
interface behaviour is unaffected by the SVI layer.

5.9. Integrated Circuit Behavior View – Detailed Behavioral Model

The integrated circuit behavioral view is provided by means of a detailed behavioral model
of individual integrated circuit devices.  This model describes the timing and function of an inte-
grated circuit, without implying a specific internal implementation, and describes the function and
timing of each individual I/O pin on the device.  The integrated circuit detailed behavioral model
is used to build the module behavior view, for the detailed design of multi–component modules and
for analyzing the impact of model year upgrades of individual integrated circuits.  Any delay penalty
associated with the SVI encapsulation must be be included in the timing behavior of affected inte-
grated circuit behavioral models.

5.10. Integrated Circuit Function View – Register Transfer Level (RTL) Model

The integrated circuit view uses RTL models to describe the behavior and implementation
details of custom (non–COTS) integrated circuits in the RASSP system.  An RTL model describes
an integrated circuit in terms of registers, combinational circuitry, low–level buses, and control cir-
cuits.  This description is the lowest level of description of a reuse library element.  The integrated
circuit RTL model is used for detailed logic design, and ultimately is the source code for directly
synthesizing an ASIC, FPGA, or PLD implementation.  On those devices that form the interface be-
tween the architectural–level elements and the interconnect fabric, generally one per module or ar-
chitectural element, the SVI encapsulation will also be represented by RTL description.  Any delay
penalty associated with the SVI encapsulation will automatically be included in the model by virtue
of the inclusion of the SVI description itself in the model.
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6. INTERFACE STANDARDS

Open interface standards should be used within RASSP systems wherever possible to further
ensure interoperability between components. Using commercially accepted and non–proprietary
standards may preclude the necessity of functional interface encapsulations is some cases, as COTS
fabric interface components may allow direct communication between architectural elements and
the selected standard interface.  In any case, confining designs to open interface standards will help
ensure multiple sources and reasonable costs for compatible components, eliminating the depen-
dence on sole source proprietary components, and will help ensure a well–understood and problem–
free interconnect technology due to its acceptance and proliferation elsewhere in the military and/or
industry.

It was the intention at the time of the writing of the RASSP MYA Working Document that the
scope of the Model Year Architecture would include the maintenance of a set of approved RASSP
accepted and recommended open interface standards.  Upon further consideration it has been deter-
mined impractical and inappropriate for RASSP to attempt to qualify interface standards, but to
instead provide a recommended methodology for selecting appropriate interface standards.  There
are several factors mitigating against RASSP–accepted interface standards.  The primary issue is
that there can be several applicable standards for a particular signal processing system application,
one of which may be more appropriate for a particular application than another; it is not in the best
interest – or the intention – of RASSP to dictate which standard is most appropriate.  In addition,
organizations such as such as the Navy’s Next Generation Computer Resources (NGCR) and the Air
Force Joint Integrated Avionics Working Group (JIAWG) have expended a great deal of time and
effort in evaluating and selecting standards applicable to their respective application domains.  There
is little value added for RASSP to reinvent the results of these organizations.  Finally,  not all inter-
faces are under complete control of the signal processor design.  For example, subsystem interfaces
will be used to interface RASSP signal processors to a large amount of ancillary equipment and sub-
systems previously designed and/or outside the control of RASSP.

6.1. RASSP Recommended Selection Process

The following process may be used to systematically select the optimum interconnect ap-
proach for a particular design from among open interface standards.

6.1.1. Classification of Interface Standards

Interface standards are categorized for convenience in the RASSP selection process into six
applications areas, and are identified in Figure 5 .

STD1 – Internal Module Interface

The internal module interface forms the backbone for RASSP signal processors and is there-
fore the single most important interface in RASSP.  Examples of this application area include:  SCI,
Fibre Channel, Raceway, QuickRing, and SkyChannel.
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STD2 – Subsystem Interface

Examples of subsystem interface types include:  Ethernet, MIL STD 1553, Heterogeneous
Interconnect (IEEE P1335),  Fiber Channel, ATM / Sonet, FDD, and IEEE Firewire.

STD3 – Sensor Interface

Three possible general application areas for sensors have been identified: 1) integrated sen-
sors:  e.g. multichannel A/D converter modules within the signal processor backplane with analog
inputs provided directly into the signal processor cabinet, 2) local sensors: external to the signal pro-
cessor but located within 1 meter of the signal processor, or 3) remote sensors: 1 – 100 meters or
more. In the case of integrated sensors, the sensor interface would simply be the internal module
interface.  Local sensors may use the internal module interface if it is capable of traversing small
distances beyond the backplane itself (possibly with suitable buffering / retiming).  Remote sensors
will require a specific interface developed specifically for long distance links, examples of which
include:  Fiber Channel, ATM / Sonet, and HIPPI / Serial HIPPI.

STD4 – Inter–Chassis Interface

High–end systems may require more than one chassis or cabinet to accommodate the signal
processor, requiring the capability of high–speed low–latency communication between / among
chassis.  Depending on the capabilities of the internal module interconnect,  inter–chassis commu-
nication might be accomplished by its extension between chassis (possibly with suitable buffering
/ retiming), or a special link may be required, particularly if the physical separation between chassis
is more than some nominal distance.  Examples of inter–chassis interfaces include:  Extension of
internal module interface (if suitable), Fiber Channel, and Mercury RLNK.

STD5 – Multidrop Bus

Multidrop busses may serve three purposes in a RASSP system: 1) internal module intercon-
nect for some classes of systems; 2) a means of general control, configuration, or bootstrapping the
system; or 3) a means to interface previously designed modules or systems which are based on a par-
ticular multi–drop bus.  Examples of the more commonly used multidrop buses are:  Futurebus+ ,
Pi–Bus, VME,  Multibus II, SkyChannel, and PCI.

STD6 – Test / Maintenance Interface

The use of standard test interfaces throughout the design hierarchy is necessary to support
the RASSP Design for Test strategy.  Two main application areas for test interfaces are: 1) chip and
MCM level, and 2) board, chassis, and system level.  The following open test interface standards
support these test interface applications:   Chip and MCM level:  IEEE 1149.1 (JTAG); Board, Chas-
sis, and System level:  IEEE 1149.5 Test Maintenance (MTM) Bus, VME Extensions for Instrumen-
tation (VXIbus), and Hierarchical 1149.1 Extensions.

The selection of appropriate test interfaces will be performed with the DFT methodology
task, which is also developing the test architecture.

6.1.2. Identify Viable Open Interface Standards

The second task for selecting an optimum open interface standard for a design is to identify
the viable open interface standards from among the population of possibilities.  The following pro-
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grammatic criteria should be considered to identify and evaluate current and emerging open com-
mercially–accepted interface standards as applicable candidates for RASSP signal processors:

� Availability of Commercial Components

Components to implement a standard should be commercially available in the time–frame
of the particular RASSP model year under consideration.

� Commercial Acceptance

The standard should have or show great promise to have wide commercial acceptance.

� Sufficient Documentation for Design

The specification must be well documented to alleviate problems associated with ambiguous
interfaces.

� Economics/Cost

Implementing networks conforming to the standard specification should be achievable by
vendors from an economic viewpoint.

� Maturity

The standard should be mature with high confidence of implementation using various
technologies in the timeframe of the particular RASSP model year under consideration.

� Non–proprietary and supported

The network specification / interface must be in the public domain and should not be propri-
etary.

6.1.3. Technical Evaluation of Viable Open Interface Standards

For a specific standard to make its way into a signal processor design, it should be subjected
to a more formal selection process than the initial identification of viable open interface standards,
and should addresses the requirements for a particular application domain.  Once selected, RASSP
encapsulated interface library components would be generated (if none are available from previous
designs) to support the selected interface standard.  As new standards emerge and are adopted for
use, they can be incorporated into new library components to facilitate their interoperability with
previously defined components, thus providing a model year upgrade with respect to the new inter-
face. A proposed formal selection process suitable for application specific standard selection is pres-
ented in this section.

6.1.3.1. Technical Evaluation of Viable Open Interface Standards – First Tier

Once a set of viable open interface standards has been compiled, the next step is to begin the
technical evaluation of these standards relative to both the general requirements of a RASSP archi-
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tecture, and the specific requirements of the targeted design.  The “first tier” criteria are the most
basic technical criteria which will ensure that a particular open interface standard will qualify for
consideration in a RASSP design.  The applicability of these criteria, and the following second tier
criteria, is dependent to some degree on the interface type under evaluation (STD1 – STD6); a matrix
of the technical evaluation criteria to be used for each of the various RASSP interface types is pres-
ented in Table 1 .

� Bandwidth

Minimum usable bandwidth (bits per second) per link required to support high–performance
systems developed under RASSP.

� Physical Constraints

Specifies the size, weight, pin count, power, etc. that the interface to the network requires.

� RASSP Compatibility

The ability of the network to be used in the global RASSP framework with other RASSP
standards.

� Real–time Support

The ability of the network to support realtime transactions, that is, to perform a transaction
within a set deadline.

� Scalability

The ability of the network to accommodate from a very small amount of resources (nodes)
to a very large amount of resources.

6.1.3.2. Technical Evaluation of Viable Open Interface Standards – Second Tier

Finally, after candidate open interface standards have passed the first tier technical criteria,
the remaining standards should be evaluated according to the following addition technical criteria.
These additional technical criteria are more appropriately addressed with respect to the requirements
of particular applications where the relative importance for each factor can be weighed.

� Asynchronous Clocking

The ability of the network to operate without having to distribute a global clock throughout
the network.

� Cache Coherence

The ability of the network to provide intrinsic support for cache coherency in a distributed
shared memory environment.

� Concurrent Path Scalability

The ability to connect multiple interconnects between any two nodes to support either redun-
dancy or higher communication performance.



 

RASSP Model Year Architecture Specification – v1.0

09/20/96 Volume II – RASSP Hardware Architecture Element Specification 23

� Data Security

The ability to prevent unauthorized access to data in a system.

� Environmental

Specifies requirements for shock, vibration, temperature range, radiation hardening, EMI,
EMP, EMC, etc. that the network interface must meet.

� Error Correction

Specifies the types of errors on the network which are corrected and any extra actions which
must be taken to correct errors.

� Error Detection

The ability to detect transmission errors and the probabilities that certain types of errors are
detected.

� Fault Tolerance

The ability of the network to continue to operate after a hard fault (e.g. a stuck at fault on a
signal line or a dead or crashed processor node).

� Flow Control

The ability of the network to allow a destination node to control (throttle) the speed at which
information is sent from the source node.

� Interconnect Distance

The physical point–to–point distance over which a network is a able to support communica-
tions.

� Latency

Maximum time delay of a message from a source node, through the interconnect network,
and to the destination node.  Latency is a combination of: 1) time of access to the interconnect and
2) transit across the interconnect.

� Memory Address Space

The quantity of memory that is directly addressable across the network as well as the type
of address space (flat or hierarchical) in a network that supports a memory–based communication
paradigm.

� Message Passing

The ability of the network to function in a message–passing environment.

� Message Size

Maximum and minimum packet sizes supported by the network.
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� Multicast

The ability for intrinsic support of multicast messaging.

� Node Addresses

Number of unique addresses for nodes available in the network.

� Reconfigurability

The ability and speed at which the network is capable of activating redundant networks or
nodes to compensate for faults or changes (includes live insertion).

� Routing

Specifies the routing characteristics supported by the network, i.e. connection versus con-
nectionless, deterministic versus  non–deterministic, ability to circumvent deadlocks, virtual chan-
nel support, etc.

� Shared Memory

The ability of the network to function in a distributed shared memory environment.

� Software Impact

The protocol is considered to have no software impact if the software writer does not need
to know the exact system configuration to write programs, but only a global address or other similar
means of identification.

� Time Synchronization

The ability to have a common time base across the network.

� Topology Support

The ability of the network to support various topologies.

� Testability Support

The ability of the network to support various testability schemes.

6.1.3.3. Quantifying the Selection Process

Figure 6 outlines a suggested process for selecting from among open interface standards for
a particular design.  This process was adapted from that used by the NGCR working group.  The
NGCR approach is very comprehensive and provides a good basis for a RASSP selection process.
The aim of NGCR is to select a set of standards representing the most widely–accepted, commercial-
ly–based standards for an extended period of time. NGCR’s nine interface application areas include
backplane, point–to–point processor and sensor interconnects, high–performance networks, and lo-
cal area networks.  The aim of RASSP is to provide more flexibility in choice (within a set of suitable
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candidates) and is less oriented towards long term use of specific standards, but more toward upgrad-
ability and interoperability of those standards.  To this end, RASSP simplifies the NGCR selection
process by eliminating the formalism of requiring trial runs, specific meetings, and presentations.

Referring to Figure 6 , the list of candidates for a particular interface standard application
within a RASSP signal processor is one of two inputs to the overall selection process. The other input
to the process is the set of evaluation factors that are assigned weights according to the requirements
of the particular application or application domain. The weights are developed by a team prior to
candidate evaluation, and are then averaged across the team to provide a final set of weights.  The
evaluation factors are used to score the interface candidates, the results of which are screened for
mandatory requirements.  Any candidate not meeting critical evaluation factor(s) is eliminated.  The
remaining candidate scores are weighted and averaged to form the final scores.  The team selects
the candidate with the highest score, unless there are obvious scoring anomalies, in which case the
selection is made by consensus.
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Figure 6 RASSP Interface Standard Selection Process
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Table 1 RASSP Interface Standard Technical Evaluation Factors
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7. SUMMARY

This document has presented the specification for RASSP hardware architecture elements.
The definition of the Model Year Architecture is based on requirements for signal processor design
that have evolved from experience in signal processor system design, as well as the additional re-
quirements imposed by the RASSP philosophy to address a 4X reduction in development cycle and
life–cycle costs, technology insertion, upgradability, and extensibility.  The characteristics of the
Model Year Architecture are that it: 1) must be modular, scalable, and open (non–proprietary), 2)
should incorporate non–proprietary standard interfaces wherever possible, 3) should leverage com-
mercial technology whenever possible, 4) must provide a way to incorporate custom components
when necessary, 5) must facilitate reusability of components, and 6) must provide support for low–
cost hardware and software upgrades for continuous product improvement.

 The structure of the reuse library components at the architectural level contains the essence
of what makes a resulting architecture a Model Year architecture.  Using Object Oriented Design
techniques to define the various Functional Architecture constructs provides a convenient and natu-
ral approach for developing upgradable architectures as well as designing and maintaining the reuse
library elements themselves.  Library element object classes include both hardware and software
portions which are co–dependent, each of which contributes to the object’s total behavior.  The hard-
ware and software portions are encapsulated to hide implementation details from the user, limit
propagation of changes resulting from upgrades, and to ensure interoperability.  The encapsulation
implements a standard functional interface that is accessible to the user: a hardware portion called
a Standard Virtual Interface, and a software portion that is a standard Application Programming In-
terface (API).  By limiting access to this interface, upgradability and technology insertion is greatly
enhanced.  In addition, the formal but judicious use of layering within both the hardware and soft-
ware architecture plays an additional role in defining library element object classes and where vari-
ous interfaces are most appropriate.

  The use of open interface standards will further ensure interoperability between and reuse
of various signal processor elements, and will help ensure multiple sources and reasonable costs for
compatible interface components, eliminating the dependence on sole–source proprietary compo-
nents.


