
ADVANCED TECHNOLOGY LABORATORIES

Rapid Prototyping of Application–
Specific Signal Processors (RASSP)

RASSP Model
 Year

 Architecture
 Specification

Volume I

Introduction to
 Model Year
Architecture

Version 1.0
September 5, 1996

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture i

Table of Contents

1. INTRODUCTION 1

1.1. Background 1

1.2. Purpose 1

1.3. Scope 2

1.4. Document Outline 2

2. REQUIREMENTS 3

3. MODEL YEAR ARCHITECTURE OVERVIEW 6

4. MYA SPECIFICATIONS 11

4.1. Vol. I – Introduction to Model Year Architecture 11

4.2. Vol. II – Hardware Architecture Element Specification 11

4.3. Vol. III – Standard Virtual Interface Specification 11

4.4. Vol. IV – Standard Virtual Interface Specification
Appendices 11

4.5. Vol. V – Software Architecture Element Specification 12

4.6. Vol, VI – Model Year Architecture Re–Use Library
Element Specification 12

5. SUMMARY 12

Appendix I. Acronyms used in RASSP Model Year
Architecture Specification 15

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 1

1. OVERVIEW

1.1. Background

Traditional design of embedded military signal processors has hinged on providing the best
possible performance for a particular application or problem domain. The results were highly cus-
tomized solutions that frequently used proprietary or non–standard interfaces and required long de-
velopment cycles, which incurred high non–recurring engineering (NRE) costs. Upgradability,
while sometimes addressed in the initial design, still required significant NRE costs because of the
design’s custom / proprietary nature.

The RASSP program goal is to develop an approach that will drastically improve the process
by which embedded signal processors are designed. Such improvement will result in a fourfold re-
duction in both design cycle for initial design and fielding as well as for upgrading existing designs,
and life–cycle costs (LCC). This improvement will be achieved through a methodology that stresses
reusing hardware and software elements in conjunction with an architectural approach that encour-
ages and facilitates reusability and upgradability through the adoption of open interface standards.
This architectural approach is termed the Model Year Architecture (MYA). The term “Model Year
Architecture” implies a design approach in which architectural elements (hardware/software) are
upgraded on an evolutionary basis, and are made available as reuse elements to be employed to de-
sign new, or upgrade existing, RASSP systems. Based on this approach, a system designed with the
architectural elements of a given model year is typically an evolutionary improvement over a system
from the previous model year, not a completely redesigned system.

1.2. Purpose

The purpose of the RASSP Model Year Architecture Specification is to consolidate and com-
municate the latest developments in the Lockheed Martin RASSP Model Year Architecture defini-
tion. This document, RASSP Model Year Architecture Specification – Version 1.0, represents the
first formal release of the MYA specification and coincides with the completion of the primary phase
of the RASSP program. This specification supercedes information contained in preceding versions
of the RASSP Model Year Architecture Working Document, and has been refined through three pre-
vious iterations during the course of the RASSP program. This version of the MYA Specification
differs from previous versions of the MYA Working Document in that the specifications for the four
key components of the Model Year Architecture –– hardware architecture elements, the Standard
Virtual Interface, software architecture elements, and reuse library elements –– have been broken
out as separate volumes of the MYA Specification. Except for the Standard Virtual Interface specifi-
cation, the information covered in these volumes was previously included in the MYA Working Doc-
ument. This volume of the MYA Specification presents an overview of the Model Year Architecture
approach and introduces its constituent components.

The refinement process through which the MYA Specification has and will continue to occur
can be described by The Risk Driven Expanding Information Model, or RDEIM, which is being used

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 2

to describe the RASSP Design Methodology. The RDEIM concept is a useful and appropriate model
for the development of the Model Year Architecture definition since the refinement process is based
on identifying risks and issues with the baseline definition, addressing those risks and issues having
the highest priority and in so doing, reducing those risks while increasing the level of information
available to refine and update the definition. The progression through several cycles or iterations
has gradually expanded the information content and refined the MYA framework definition, and si-
multaneously reduce the level of risk associated with it

Risk abatement and information expansion have occurred through investigative activities as
part of the Architecture Task. Issues have been identified in previous drafts of this document and
at subsequent working group meetings and have been resolved through further refinement of the ar-
chitecture definition as well as efforts on the Model Year Architecture Verification subtask. This
subtask was a major investigative activity which has been formally defined as part of the Architec-
ture Task to address and reduce risks associated with definition of the architectural constructs of the
MYA framework through modeling and simulation exercises.

1.3. Scope of the Model Year Architecture

The Model Year Architecture scope includes the following elements:

1) An approach for scalable interconnection of modules or elements that perform sig-
nal processing functions. Such elements include standard programmable proces-
sors (general purpose or DSP), custom programmable processors or accelerator
hardware, special–purpose processors (e.g. SIMD processors), sensors, and
memory modules.

2) An approach to interface a signal processor subsystem to other platform subsys-
tems.

3) An approach to architectural–level library component definition that facilitates
rapid insertion of upgraded architectural components without requiring redesign
of other system components.

4) A modular software architecture incorporating standard application programming
interfaces that facilitates rapid insertion of upgraded software elements (operating
systems, drivers, application libraries) with minimal module interaction and inter-
dependencies. The modularity of the software architecture will also accommodate
hardware upgrades by confining changes to hardware specific software modules.

5) The use of open interface standards wherever possible; that is, interface standards
that are both commercially accepted and not proprietary to ensure interoperability
between components.

1.4. MYA Specification Outline

The Model Year Architecture Specification consolidates the four specifications of the prima-
ry components of the Model Year Architecture, along with an overview of the Model Year approach

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 3

and rational. This document, Volume I, serves as an introduction to the Model Year Architecture
and to the constituent components of the overall specification. Section 2 summarizes the rationale
and driving requirements for the RASSP Model Year Architecture. Section 3 presents an overview
of the RASSP Model Year Architecture approach. Section 4 provides an introduction to each of the
remaining volumes of the MYA Specification. Section 5 presents a summary of the Model Year Ar-
chitecture concept.

The remaining volumes of the MYA Specification are organized as follows: Volume II –
RASSP Hardware Architecture Element Specification; Volume III – RASSP Standard Virtual Inter-
face Specification; Volume IV – RASSP Standard Virtual Interface Specification Appendices; Vol-
ume V – RASSP Software Architecture Element Specification; and Volume VI – RASSP MYA Re-
Use Library Element Specification.

2. REQUIREMENTS

The drivers for RASSP signal processor architecture definition result from the requirements
imposed on signal processors to meet mission-critical processing needs as well as a 4X reduction
in development cycle and life-cycle costs (LCC). Development cycle and LCC requirements have
fueled the need to address low-cost technology insertion, upgradability, and extensibility. This sec-
tion discusses the requirements imposed on RASSP signal processors and their impact on signal pro-
cessor architecture and design. These requirements form the basis for the RASSP Model Year Archi-
tecture development and are encompassed in the categories of Development Cycle Reduction, Life
Cycle Support, Scalability, Heterogeneity, Flexible Interfaces, Modular Software, Testability, and
System Retrofits.

Development Cycle Reduction

The concept of the Model Year Architecture revolves around a new paradigm for signal pro-
cessor design that is based on the concept of successive refinement through a series of short design
cycles. This paradigm will replace the traditional one of developing optimized point designs that
result in long development cycles and difficult and/or costly upgrades. The successive refinement
approach supports rapid delivery of initial prototype systems based on existing technology, possibly
at the expense of some performance, to allow end users to evaluate and test the system. The trend
of rapid performance improvement in commercial technology enables the system to be successively
refined, upgraded with new technology, and debugged through several design cycles on a Model
Year basis. This results in the delivery of a system (in the same amount of time) with more functional-
ity, fewer flaws, and less cost. The desire to incorporate multiple design cycles into a development
program is the basis for requiring a 4X reduction in current design cycle times.

Life Cycle Support

Life cycle support is an essential requirement for RASSP signal processors and is one of the
prime motivators of the RASSP philosophy. The cost and logistics associated with the life cycle of
a fielded signal processor are at least as important as the initial savings in development cost and

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 4

schedule. Life cycle support must be designed into the signal processor from the start. This includes
aspects of both Design For Test (DFT) to support expedient low-cost field maintenance and diagnos-
tics, and designing for model year upgradability that will extend the useful life cycle of the signal
processor. The following requirements follow directly from the needs of life cycle support and de-
velopment cycle reduction.

Scalability

Experience has shown scalability –– along with size, weight, and power –– to be an extreme-
ly important requirement for military signal processor systems. Changing scenarios and the need
for new counter-measures often require increased functionality over the system’s life cycle. Further-
more, the same basic system may be deployed with different amounts of functionality depending
on the intended mission environment. All these factors require a system that is highly scalable to
minimize NRE, recurring, and life cycle costs.

The system-level scalability requirement in turn imposes a requirement on the interconnec-
tion of system elements. To meet a high degree of scalability, system elements must be intercon-
nected to impose few, if any, restrictions on the number of elements to be interconnected (from a
very small to very large number), with no adverse affects on performance. The interconnection
scheme must also support low-latency realtime communication.

Heterogeneity

The diverse domains of signal processing and the wide range of performance requirements
for different systems impose an implicit requirement to support heterogeneous designs. This implies
the use of several different processing element types in a single system to implement functions they
are most suited to. For example, application of adaptive filter weights to a high-speed data stream
may be done most cost effectively by a specialized vector processor; computing the weights to apply
may incorporate some heuristic aspects and be updated at a fairly modest rate, and may be done most
cost effectively on a general-purpose processor. Heterogeneous designs must support the incorpora-
tion of the following elements:

1) General-Purpose Processors

2) Digital Signal Processors (DSP)

3) Special-Purpose Processors (e.g. SIMD processors)

4) Custom Hardware Accelerators

5) Shared Memory Nodes

Flexible Interfaces

A signal processor is a component of a larger system, and as such it must interface to other
components or subsystems. RASSP signal processors must provide an approach to interface to the
following types of subsystems:

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 5

1) Loosely-coupled processor subsystems (data processors, consoles / workstations)

2) Mass storage systems (disk, tape)

3) Ancillary equipment (receiver / transmitter control, navigation, etc.)

In addition to subsystem interfaces, RASSP processors must provide a standard approach
for sensor interfacing that can accommodate the typically custom nature of sensors without placing
too many restrictions on them. Such sensors include receivers, video sources, audio sources, etc.,
that provide digital outputs within the defined scope of RASSP. Analog signal processing, condi-
tioning, and digitizing (A/D) are considered outside the scope of RASSP, although interfacing to the
digital side of A/D converters is considered within the scope.

Modular Software

 Experience has shown software development and maintenance to be a very costly part of
signal processor design, primarily as a result of the lack of both code reuse and standard program-
ming languages. The fact that signal processors have historically been custom designs with custom
assembly or microcode, which were hand-coded at that level to achieve maximum performance,
meant that software developed for one design usually could not be reused on another. If a system
needed to be upgraded with a faster processor, the assembly or microcode would not necessarily be
compatible with the original, which resulted in a large recoding effort.

RASSP signal processors must be supported by a software approach that is modular, readily
reusable, and upgradable with minimal module interdependencies and interactions. Software devel-
oped for a particular design must be reusable for subsequent designs, particularly common signal
processing functions that share widespread applicability to many domains. To support hardware up-
grades, software must be easily portable, which dictates using standard programming languages and
standard application programming interfaces. Modularity must be implemented to minimize inter-
dependencies and interactions, which allows underlying operating systems, services, and library im-
plementations to be upgraded with little or no impact on application software.

Testability

RASSP signal processors must incorporate a test strategy as an integral part of the design
to ensure a high-quality product while maintaining the aggressive goals of design cycle, non-recur-
ring, and life cycle cost reduction. An ad hoc or inadequate treatment of testability will manifest
itself by severely impacting component testing, system integration, and test aspects of the design
cycle, as well as field maintenance and diagnostics during its life cycle.

RASSP processors must be able to detect and isolate faults with high probability; for high-
reliability systems they must also reconfigure in realtime. To achieve these goals, Built-In Test (BIT)
must be included at the processor system, chassis, board, and multichip assembly levels. Hierarchi-
cal test and maintenance busses must be included to control test assets at lower levels and to report
test results up to the system level. To meet the rapid prototype goals, COTS components will likely
be used, but chips and components that support boundary scan and Built-In–Self–Test (BIST) are
preferred over ones that do not. When new components are designed, DFT features must be in-
cluded.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 6

System Retrofits

In addition to new systems, RASSP signal processors may be retrofitted into previously de-
signed non–RASSP (legacy) systems, which means providing support to incorporate RASSP signal
processors into non–RASSP systems.

In summary, the RASSP Model Year Architecture specification provides an approach to de-
signing signal processors which fully addresses these stated requirements. This specification will
be integrated into the RASSP design methodology to provide the framework for implementing sig-
nal processor designs that meet these requirements.

3. MODEL YEAR ARCHITECTURE OVERVIEW

This section provides an overview of the Model Year Architecture framework which has
been defined to address the requirements presented in Section 2. The architectural constructs to be
described rely heavily on the mutual support of hardware and software elements.

Model Year Architecture characteristics needed to support the stated requirements are:

– Modular and scalable open architecture

– Communications via non–proprietary, standardized interfaces

– Leverage of commercial technology (components, boards, etc.) whenever possible

– Support for heterogeneity

– Incorporation of custom components

– Modular software architecture

– Reusability of components

– Support for low–cost hardware/software upgrades for continuous product improve-
ment

In defining a Model Year Architecture framework, one must consider how it will be used to benefit
a signal processor design. What does this framework provide with respect to the RASSP Methodolo-
gy? Figure 1 depicts a User’s View of the Model Year Architecture. The user or system designer
has the task of designing a system to solve a particular application problem. What is available to
the user is the problem definition and the RASSP Methodology. These two items are insufficient
to design a signal processor that meets all RASSP requirements. The user could design a signal pro-
cessor, but it would most likely be a custom solution to optimally fit the specific problem at hand,
which would lengthen the initial design cycle (Note: RASSP does not preclude customization, but
allows its use within constraints). Also, there are no guarantees regarding the degree of upgradabil-
ity and facility for technology insertion that the user may consider and the overall result may tend
toward the old point design paradigm. The Model Year Architecture framework is integrated into

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 7

ÎÎÎÎÎ
ÎÎÎÎÎ

Functional Architecture Design Guidelines,
Constraints,
I / F Standards

Model Year Architecture Framework

Application
Notes

Encapsulated
Library Elements

uK

Cmd Prog SPGN

Ctrl I/F DF I/F Prim

Posix Posix

Modular Software
Architecture

System Application

– Radar – ...
– IRST – ...
– UW Acou. – ...

RASSP
Methodology

Specific Instantiation of
Model Year Architecture

RASSP
reuse
Libraries

MYA Framework
Integrated
Into RASSP
Methodology

Figure 1 User’s View of Model Year Architecture

Mutually
Supportive

the RASSP Methodology to provide additional resources and constraints to the design process. This
will enforce a structured approach to ensure that the design incorporates all the required features of
a Model Year signal processor.

The Model Year Architecture framework is comprised of several components that affect how
a user designs a signal processor. These components, which impact the RASSP Methodology in ar-
chitecture development, hardware/software reuse library management, hardware synthesis, and tar-
get software generation, are formally specified in the remainder of the Model Year Architecture
Specification. The following descriptions are an overview of the five major components that com-
prise the Model Year Architecture Framework.

Functional Architecture

 The Functional Architecture defines the necessary components at the architectural level and
the manner in which their interfaces must be defined to ensure that the resulting architecture design

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 8

is upgradable and facilitates technology insertion. As such, the Functional Architecture is a starting
point for developing an architecture for an application–specific problem, not a detailed instantiation
of an architecture. The diversity of application domain requirements precludes specifying instantia-
tion details at this level. Experience has shown the need to significantly tailor architectures for dif-
ferent application domains. While every design should start with the Functional Architecture, spe-
cific architectural details needed to serve the application problem at hand, such as what type(s) of
and how many processing elements (PEs) to use, the best interconnect topology for the problem do-
main, the need for shared memories, etc., will be developed as part of the Architectural Selection
portion of the RASSP Methodology.

Encapsulated Library Components

Although the RASSP Functional Architecture defines architectural level components and
their interface definitions, the embodiment of a Model Year Architecture lies in the reuse libraries
which support it. The RASSP reuse library element structure is defined with a VHDL modeling hier-
archy with three levels of representational abstraction:

Level 1: Token–Based Performance Models – Timing–only behavior to support high level ar-
chitectural tradeoffs.

Level 2: Abstract Behavioral Models – Full timing and behavior of multi–component electron-
ic modules to support module–level trade–off analysis.

Level 3: Detailed Behavioral Model – Timing and behavior of individual integrated circuits for
low–level design and verification.

Above these three abstraction levels is assumed to be an executable specification, also in VHDL,
which describes the combined hardware and software performance and functionality of the system.
In addition to the three levels of representational abstraction, the reuse library also contains a struc-
ture relating to the physical hierarchy of the reuse elements. Together, the physical hierarchy and
representational abstraction provide a hierarchy of views of a RASSP system.

To support the Functional Architecture, reuse library elements must be encapsulated at the
architectural level. Encapsulation refers to additional structure or wrappers added to otherwise
“raw” library elements to support the Functional Architecture framework and ensure library element
interoperability and upgradability. The concept of reuse requires encapsulated library components
at the architectural level (PEs, internal interconnect interface elements, shared memories, subsystem
and sensor interface elements) to ensure that the developed signal processor incorporates the re-
quired model year characteristics. The Model Year Architecture library encapsulation requirement
is one of the key drivers in developing and maintaining reuse libraries. Incorporated within the reuse
libraries are application notes that the designer can use to properly apply each component. Section
4 describes how encapsulation supports the Functional Architecture, and Section 5 specifies how
encapsulations are created.

 The concepts of encapsulation, the use of standard interfaces, and hiding of implementation
details are used by Object Oriented Design (OOD), which has been successfully applied to software
development. RASSP is extending the concepts of OOD to signal processor architecture design, en-

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 9

compassing both the hardware and software aspects to support the Model Year concept. In essence,
an architectural library element such as a processing element can be thought of as an object (or more
precisely, an object class which becomes an object upon instantiation) as depicted in Figure 2 which
possesses:

1) A restricted but standard interface (the functional interface)

2) A defined functional capability or set of methods implemented via a combination
of hardware (represented by VHDL models) and software accessible through the
object’s member functions (standard software library functions).

3) Encapsulation to hide implementation details from the user and to limit the propa-
gation of changes resulting from upgrades.

The implementation of the object’s functionality requires a co–dependency of its hardware and soft-
ware aspects, necessitating hardware–software codesign of such object–oriented architectural li-
brary elements. Operating systems require configuration to take advantage of whatever hardware
resources are available to support its functionality. Likewise, application libraries may need config-
uration or optimization dependent on the hardware implementation.

A concise definition of the various object classes and their attributes for reuse is contained
in MYA Spec. Vol. VI – MYA Re-Use Library Element Specification.

Modular Software Architecture

As stated earlier, hardware and software elements must be mutually supportive to successful-
ly implement the framework needed to design Model Year Architectures. As such, a modular soft-
ware architecture extends the Model Year Functional Architecture into the software domain. The
definition of standard requirements for operating system functionality, services, and interfaces, the
use of standard application programming interfaces, and separable hardware–dependent software
modules (e.g. I/O drivers) with standard interfaces, will encapsulate the functionality of software
modules, separating and hiding implementation details from the designer. Such software modules
will be defined to support the Functional Architecture elements. This form of encapsulation will
support plug–and–play reuse and model year upgradability of operating system kernels, external
services, application libraries, as well as support hardware upgrades. This renders the application
software virtually portable to the underlying hardware and software platforms and is a primary goal
of the Model Year Architecture.

Open Interface Standards

Open interface standards must be used to ensure interoperability between components. This
means hardware and software interface standards that are both commercially accepted and not pro-
prietary. Open standards for RASSP interfaces will be incorporated into hardware and software li-
brary components. As new / improved standards evolve, these can be incorporated as new encapsu-
lated library components to facilitate their interoperability with previously defined components,
offering Model Year upgrade capability.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 10

VHDL
Level 1

VHDL
Level 2

VHDL
Level 3

Token–Based
Performance

Model
(leaf => PE)

Abstract
Behavioral

Model
(leaf => module)

Detailed
Behavioral

Model
(leaf => I.C.)

Encapsulation

Processing Element Object

Hardware

Software

Application
Libraries

Operating
System &
Services

HW/SW
Co–dependency

Encapsulation

Standard
Virtual
Interface
(SVI)

Standard
Application
Programming
Interface (API)

Functional
Interface

Figure 2 Processing Element Object Example. Object Oriented Design of Architec-
tural library elements facilitates rapid design and Model Year Upgrades.

Design Guidelines and Constraints

The Model Year Architecture Framework also provides a set of design guidelines and
constraints for general architectural development, such as how to properly use the functional archi-
tecture, general use of encapsulated libraries, and most importantly, procedures to encapsulate new
library components. Such design guidelines and constraints will be incorporated into the RASSP
design methodology.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 11

4. MYA SPECIFICATIONS

 The following six volumes of specifications comprise the RASSP MYA Specification:

4.1. Vol. I – Introduction to Model Year Architecture

This document, Volume I, serves as an introduction to the Model Year Architecture and to
the constituent components of the overall specification.

4.2. Vol. II – RASSP Hardware Architecture Element Specification

 The purpose of the RASSP Hardware Architecture Element Specification document is to
convey a formal specification for hardware architecture elements which comprise the RASSP Mod-
el Year Architecture (MYA) Functional Architecture. The Functional Architecture defines the nec-
essary components at the architectural level and the manner in which their interfaces must be defined
to ensure that the resulting architecture design is upgradable and facilitates technology insertion.
Adherence to this specification will ensure the creation of architectural elements, and the design of
specific architectures which include them, which will provide the RASSP MYA features of architec-
tural element reuse, interoperability, and facilitated upgradability.

In particular the specification: describes the MYA Functional Architecture and offers design
guidelines; describes the unique interface approach devised for assembling architectural level com-
ponents in the functional architecture to create RASSP processor systems, and provides interface
guidelines; and describes the requirements to fully implement architectural level component VHDL
models as RASSP reuse library elements.

4.3. Vol. III – RASSP Standard Virtual Interface Specification

The purpose of the RASSP Standard Virtual Interface Specification is to convey a formal
specification for the Standard Virtual Interface (SVI), a technology–independent functional inter-
face which facilitates hardware upgrades and technology insertion at the architectural level. This
specification will be used when designing and modeling architectural reuse library elements to en-
sure interoperability among those various library elements. In particular, the SVI specification con-
tains: a concise definition of the signals, functional timing, and protocol of the SVI.

4.4. Vol. IV – RASSP Standard Virtual Interface Specification Appendices

The purpose of the RASSP Standard Virtual Interface Specification Appendices are to serve
as concrete aids to encapsulation designers. In particular, the appendices contain templates for SVI
encapsulations, specific VHDL encapsulation examples; and guidelines for library element design-
ers to ensure that resulting encapsulations are interoperable with one another and that they are syn-
thesizable.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 12

4.5. Vol. V – RASSP Software Architecture Element Specification

The purpose of the RASSP Software Architecture Element Specification is to support a
methodology that simplifies developing high–performance, realtime DSP applications. This meth-
odology allows the application developer to easily describe and implement signal processing algo-
rithms and control the execution of these algorithms. It supports the Model Year concept by allowing
the application to be developed in a platform–independent fashion. And it provides predictable de-
terministic response to all services provided. The architecture is defined to support the programming
of signal processing applications using a data flow graph approach, to provide high–level command
program and data flow graph development, and POSIX to support a generic operating system service
interface. These layers are built on top of a realtime microkernel supplied with the model year hard-
ware platform. The RASSP Application Programmer Interface (API) implemented using the data
flow methodology and POSIX will remain fixed throughout model years, ensuring continued and
easy porting of existing applications.

4.6. Vol. VI – RASSP Model Year Architecture Reuse Library Element
Specification

The purpose of the RASSP Model Year Architecture Reuse Library Element Specification
is to provide all information required to completely define MYA reuse library elements, and will be
used to create templates for the architectural reuse library database. A concise definition of the MYA
reuse element composition hierarchy will be defined that will specify all required and optional com-
ponents of each architectural reuse element object class and their dependencies.

5. SUMMARY

This document has presented an introduction and overview of the Lockheed Martin RASSP
Model Year Architecture specification. The definition of the Model Year Architecture is based on
requirements for signal processor design that have evolved from experience in signal processor sys-
tem design, as well as the additional requirements imposed by the RASSP philosophy to address a
4X reduction in development cycle and life–cycle costs, technology insertion, upgradability, and ex-
tensibility. The characteristics of the Model Year Architecture are that it: 1) must be modular, scal-
able, and open (non–proprietary), 2) should incorporate non–proprietary standard interfaces wher-
ever possible, 3) should leverage commercial technology whenever possible, 4) must provide a way
to incorporate custom components when necessary, 5) must facilitate reusability of components, and
6) must provide support for low–cost hardware and software upgrades for continuous product im-
provement.

The Model Year Architecture definition is a framework of five major components that will
be integrated into the design methodology:

1) A Functional Architecture that provides a starting–point for developing an ap-
plication–specific architecture and the architecture selection process.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 13

2) Encapsulated Library Components which implement the Functional Architec-
ture by adding encapsulation structures to “raw” architectural library elements to
implement standard Functional Architecture constructs. Such constructs ensure
component interoperability and upgradability. Encapsulated library components
are supported at multiple levels of VHDL hierarchy based, in part, on the VHDL
DID. Application notes provide an aid to the designer in proper application of
each component.

3) Modular Software Architecture to provide an extension of the Functional Archi-
tecture into the software domain to support upgrades of operating system kernels,
external services, and application libraries. The modular software architecture
will also provide support for hardware upgrades by confining associated software
changes to hardware–specific software modules.

4) Open Interface Standards that are commercially accepted to further ensure inter-
operability between components and to ensure wide availability of commercial
components and support.

5) Design Guidelines and Constraints for general architectural development, such
as how to properly use the Functional Architecture, general use of encapsulated
libraries, and most importantly, procedures for generating the encapsulation for
new library components.

The purpose of the Model Year Architecture framework is not to specify particular topologies or PE
types to use because these are highly dependent on the specific application at hand. This framework
is viewed as an enabler for the design methodology to produce specific instantiations of signal pro-
cessors that incorporate Model Year characteristics.

 The structure of the reuse library components at the architectural level contains the essence
of what makes a resulting architecture a Model Year architecture. Using Object Oriented Design
techniques to define the various Functional Architecture constructs provides a convenient and natu-
ral approach for developing upgradable architectures as well as designing and maintaining the reuse
library elements themselves. Library element object classes include both hardware and software
portions which are co–dependent, each of which contributes to the object’s total behavior. The hard-
ware and software portions are encapsulated to hide implementation details from the user, limit
propagation of changes resulting from upgrades, and to ensure interoperability. The encapsulation
implements a standard functional interface that is accessible to the user: a hardware portion called
a Standard Virtual Interface, and a software portion that is a standard Application Programming In-
terface (API). By limiting access to this interface, upgradability and technology insertion is greatly
enhanced. In addition, the formal but judicious use of layering within both the hardware and soft-
ware architecture plays an additional role in defining library element object classes and where vari-
ous interfaces are most appropriate.

 The use of open interface standards will further ensure interoperability between and reuse
of various signal processor elements, and will help ensure multiple sources and reasonable costs for
compatible interface components, eliminating the dependence on sole–source proprietary compo-
nents.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 14

The Model Year concepts of reusability, upgradability, and technology insertion extend to
the Model Year Software Architecture which must support a methodology to simplify the develop-
ment of high performance real time digital signal processing applications. A standardized Applica-
tion Programming Interface (API) based on Real–Time POSIX to support application control and
a data flow algorithm representation based on NRL’s PGM specification will be provided. This API
will be supported by a set of primitive libraries as well as a specialized run–time system to control
and execute multiple data flow graphs on a multi–processor system. The foundation of the software
architecture leverages commercial real–time microkernel technology to provide the basic services
needed to support the higher level services provided to the application programmer.

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 15

Appendix II. Acronyms used in RASSP Model Year Architecture Specification

A/D Analog–to–Digital
AEP Application Environment Profiles
ANSI American National Standards Institute
AP Arithmetic Processor
API Application Programming Interface
ARPA Advanced Research Projects Agency
ASIC Application–Specific Integrated Circuit
ASW Anti–Submarine Warfare
ATM Asynchronous Transfer Mode
BIT Built–in Test
BIST Built–in Self–Test
CCITT International Telegraph and Telephone Consultative Committee
CPU Central Processing Unit
DFG Data Flow Graph
DFT Design For Test
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
EDAC Error Detection and Correction
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
EMP Electromagnetic Pulse
EMSP Enhanced Modular Signal Processor
EW Electronic Warfare
FDDI Fiber Distributed Data Interface
FFT Fast Fourier Transform
FPGA Field–Programmable Gate Array
HIPPI High Performance Parallel Interface
HLL High Level Language
HW Hardware
I/F Interface
I/O Input/Output
ID Identifier
IEEE Institute of Electrical and Electronic Engineers
IRST Infrared Search and Track
ISO International Standards Organization
JIAWG Joint Integrated Avionics Working Group
JTAG Joint Test Action Group

RASSP Model Year Architecture Specification – v1.0

09/05/96 Volume I – Introduction to Model Year Architecture 16

LRM Line Replaceable Module
MIPS Millions Of Instructions Per Second
NGCR Next Generation Computer Resources
NRE Non–Recurring Engineering
NRL Naval Research Laboratory
OOD Object Oriented Design
OSI Open System Interconnect
OSM Off–Board Service Manager
PCB Printed Circuit Board
PE Processing Element
PGM Processing Graph Method
PLD Programmable Logic Device
POSIX Portable Operating System Interface for UNIX
RNI Reconfigurable Network Interface
RTL Register Transfer Level
R/T Real Time
RASSP Rapid Prototyping of Application–Specific Signal Processors
RRTS RASSP Run–Time System
SCI Scalable Coherent Interface
SCSI Small Computer System Interface
SONET Synchrounous Optical Network
SPGN Signal Processing Graph Notation
SRAM Static Random Access Memory
SVI Standard Virtual Interface
SW Software
TBD To Be Determined
TI Texas Instruments
TM Test and Maintenance
TMC Test and Maintenance Controller
TPM Target Processor Map
VITA VME International Trade Association
VME Versa Module Eurocard
VXIbus VME Extensions for Instrumentation Bus
XDR External Data Representation

